|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
from math import pi |
|
|
|
import torch |
|
from pytorch3d.implicitron.tools.circle_fitting import ( |
|
_signed_area, |
|
fit_circle_in_2d, |
|
fit_circle_in_3d, |
|
get_rotation_to_best_fit_xy, |
|
) |
|
from pytorch3d.transforms import random_rotation, random_rotations |
|
from tests.common_testing import TestCaseMixin |
|
|
|
|
|
class TestCircleFitting(TestCaseMixin, unittest.TestCase): |
|
def setUp(self): |
|
torch.manual_seed(42) |
|
|
|
def _assertParallel(self, a, b, **kwargs): |
|
""" |
|
Given a and b of shape (..., 3) each containing 3D vectors, |
|
assert that correspnding vectors are parallel. Changed sign is ok. |
|
""" |
|
self.assertClose(torch.cross(a, b, dim=-1), torch.zeros_like(a), **kwargs) |
|
|
|
def test_plane_levelling(self): |
|
device = torch.device("cuda:0") |
|
B = 16 |
|
N = 1024 |
|
random = torch.randn((B, N, 3), device=device) |
|
|
|
|
|
rot = get_rotation_to_best_fit_xy(random) |
|
self.assertClose(rot.det(), torch.ones_like(rot[:, 0, 0])) |
|
self.assertClose(rot.norm(dim=-1), torch.ones_like(rot[:, 0])) |
|
|
|
|
|
z_squeeze = 0.1 |
|
random[..., -1] *= z_squeeze |
|
rot_gt = random_rotations(B, device=device) |
|
rotated = random @ rot_gt.transpose(-1, -2) |
|
rot_hat = get_rotation_to_best_fit_xy(rotated) |
|
self.assertClose(rot.det(), torch.ones_like(rot[:, 0, 0])) |
|
self.assertClose(rot.norm(dim=-1), torch.ones_like(rot[:, 0])) |
|
|
|
self.assertClose( |
|
(rotated @ rot_hat)[..., -1].std(dim=-1), |
|
torch.ones_like(rot_hat[:, 0, 0]) * z_squeeze, |
|
rtol=0.1, |
|
) |
|
|
|
def test_simple_3d(self): |
|
device = torch.device("cuda:0") |
|
for _ in range(7): |
|
radius = 10 * torch.rand(1, device=device)[0] |
|
center = 10 * torch.rand(3, device=device) |
|
rot = random_rotation(device=device) |
|
offset = torch.rand(3, device=device) |
|
up = torch.rand(3, device=device) |
|
self._simple_3d_test(radius, center, rot, offset, up) |
|
|
|
def _simple_3d_test(self, radius, center, rot, offset, up): |
|
|
|
angles = torch.cumsum(torch.rand(17, device=rot.device), dim=0) |
|
many = torch.stack( |
|
[torch.cos(angles), torch.sin(angles), torch.zeros_like(angles)], dim=1 |
|
) |
|
source_points = (many * radius) @ rot + center[None] |
|
|
|
|
|
result = fit_circle_in_3d(source_points) |
|
self.assertClose(result.radius, radius) |
|
self.assertClose(result.center, center) |
|
self._assertParallel(result.normal, rot[2], atol=1e-5) |
|
self.assertEqual(result.generated_points.shape, (0, 3)) |
|
|
|
|
|
n_new_points = 5 |
|
result2 = fit_circle_in_3d(source_points, n_points=n_new_points) |
|
self.assertClose(result2.radius, radius) |
|
self.assertClose(result2.center, center) |
|
self.assertClose(result2.normal, result.normal) |
|
self.assertEqual(result2.generated_points.shape, (5, 3)) |
|
|
|
observed_points = result2.generated_points |
|
self.assertClose(observed_points[0], observed_points[4], atol=1e-4) |
|
self.assertClose(observed_points[0], source_points[0], atol=1e-5) |
|
observed_normal = torch.cross( |
|
observed_points[0] - observed_points[2], |
|
observed_points[1] - observed_points[3], |
|
dim=-1, |
|
) |
|
self._assertParallel(observed_normal, result.normal, atol=1e-4) |
|
diameters = observed_points[:2] - observed_points[2:4] |
|
self.assertClose( |
|
torch.norm(diameters, dim=1), diameters.new_full((2,), 2 * radius) |
|
) |
|
|
|
|
|
result3 = fit_circle_in_3d(source_points, angles=angles - angles[0]) |
|
self.assertClose(result3.radius, radius) |
|
self.assertClose(result3.center, center) |
|
self.assertClose(result3.normal, result.normal) |
|
self.assertClose(result3.generated_points, source_points, atol=1e-5) |
|
|
|
|
|
result4 = fit_circle_in_3d( |
|
source_points, angles=angles - angles[0], offset=offset, up=up |
|
) |
|
self.assertClose(result4.radius, radius) |
|
self.assertClose(result4.center, center) |
|
self.assertClose(result4.normal, result.normal) |
|
observed_offsets = result4.generated_points - source_points |
|
|
|
|
|
self.assertClose( |
|
observed_offsets.min(0).values, observed_offsets.max(0).values, atol=1e-5 |
|
) |
|
|
|
self.assertClose(observed_offsets[0].norm(), offset.norm()) |
|
|
|
self.assertClose(result.normal.norm(), torch.ones(())) |
|
|
|
component = torch.dot(observed_offsets[0], result.normal) |
|
self.assertClose(component.abs(), offset[2].abs(), atol=1e-5) |
|
agree_normal = torch.dot(result.normal, up) > 0 |
|
agree_signs = component * offset[2] > 0 |
|
self.assertEqual(agree_normal, agree_signs) |
|
|
|
def test_simple_2d(self): |
|
radius = 7.0 |
|
center = torch.tensor([9, 2.5]) |
|
angles = torch.cumsum(torch.rand(17), dim=0) |
|
many = torch.stack([torch.cos(angles), torch.sin(angles)], dim=1) |
|
source_points = (many * radius) + center[None] |
|
|
|
result = fit_circle_in_2d(source_points) |
|
self.assertClose(result.radius, torch.tensor(radius)) |
|
self.assertClose(result.center, center) |
|
self.assertEqual(result.generated_points.shape, (0, 2)) |
|
|
|
|
|
n_new_points = 5 |
|
result2 = fit_circle_in_2d(source_points, n_points=n_new_points) |
|
self.assertClose(result2.radius, torch.tensor(radius)) |
|
self.assertClose(result2.center, center) |
|
self.assertEqual(result2.generated_points.shape, (5, 2)) |
|
|
|
observed_points = result2.generated_points |
|
self.assertClose(observed_points[0], observed_points[4]) |
|
self.assertClose(observed_points[0], source_points[0], atol=1e-5) |
|
diameters = observed_points[:2] - observed_points[2:4] |
|
self.assertClose(torch.norm(diameters, dim=1), torch.full((2,), 2 * radius)) |
|
|
|
|
|
result3 = fit_circle_in_2d(source_points, angles=angles - angles[0]) |
|
self.assertClose(result3.radius, torch.tensor(radius)) |
|
self.assertClose(result3.center, center) |
|
self.assertClose(result3.generated_points, source_points, atol=1e-5) |
|
|
|
def test_minimum_inputs(self): |
|
fit_circle_in_3d(torch.rand(3, 3), n_points=10) |
|
|
|
with self.assertRaisesRegex( |
|
ValueError, "2 points are not enough to determine a circle" |
|
): |
|
fit_circle_in_3d(torch.rand(2, 3)) |
|
|
|
def test_signed_area(self): |
|
n_points = 1001 |
|
angles = torch.linspace(0, 2 * pi, n_points) |
|
radius = 0.85 |
|
center = torch.rand(2) |
|
circle = center + radius * torch.stack( |
|
[torch.cos(angles), torch.sin(angles)], dim=1 |
|
) |
|
circle_area = torch.tensor(pi * radius * radius) |
|
self.assertClose(_signed_area(circle), circle_area) |
|
|
|
self.assertClose(_signed_area(circle.flip(0)), -circle_area) |
|
|
|
|
|
self.assertClose(_signed_area(circle[: (n_points + 1) // 2]), circle_area / 2) |
|
self.assertClose(_signed_area(circle[n_points // 2 :]), circle_area / 2) |
|
|
|
|
|
self.assertClose(_signed_area(torch.rand(2, 2)), torch.tensor(0.0)) |
|
|
|
|
|
L_shape = [[0, 1], [0, 0], [1, 0]] |
|
|
|
self.assertClose(_signed_area(torch.tensor(L_shape)), torch.tensor(0.5)) |
|
|