|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import unittest |
|
|
|
import torch |
|
from pytorch3d.implicitron.dataset.blender_dataset_map_provider import ( |
|
BlenderDatasetMapProvider, |
|
) |
|
from pytorch3d.implicitron.dataset.data_source import ImplicitronDataSource |
|
from pytorch3d.implicitron.dataset.dataset_base import FrameData |
|
from pytorch3d.implicitron.dataset.llff_dataset_map_provider import ( |
|
LlffDatasetMapProvider, |
|
) |
|
from pytorch3d.implicitron.tools.config import expand_args_fields, get_default_args |
|
from pytorch3d.renderer import PerspectiveCameras |
|
from tests.common_testing import TestCaseMixin |
|
|
|
|
|
|
|
internal = os.environ.get("FB_TEST", False) |
|
inside_re_worker = os.environ.get("INSIDE_RE_WORKER", False) |
|
|
|
|
|
@unittest.skipUnless(internal, "no data") |
|
class TestDataLlff(TestCaseMixin, unittest.TestCase): |
|
def test_synthetic(self): |
|
if inside_re_worker: |
|
return |
|
expand_args_fields(BlenderDatasetMapProvider) |
|
|
|
provider = BlenderDatasetMapProvider( |
|
base_dir="manifold://co3d/tree/nerf_data/nerf_synthetic/lego", |
|
object_name="lego", |
|
) |
|
dataset_map = provider.get_dataset_map() |
|
known_matrix = torch.zeros(1, 4, 4) |
|
known_matrix[0, 0, 0] = 2.7778 |
|
known_matrix[0, 1, 1] = 2.7778 |
|
known_matrix[0, 2, 3] = 1 |
|
known_matrix[0, 3, 2] = 1 |
|
|
|
for name, length in [("train", 100), ("val", 100), ("test", 200)]: |
|
dataset = getattr(dataset_map, name) |
|
self.assertEqual(len(dataset), length) |
|
|
|
value = dataset[0] |
|
self.assertEqual(value.image_rgb.shape, (3, 800, 800)) |
|
self.assertEqual(value.fg_probability.shape, (1, 800, 800)) |
|
|
|
self.assertEqual(value.fg_probability[0, 0, 0], 0) |
|
self.assertEqual(value.fg_probability.max(), 1.0) |
|
self.assertIsInstance(value.camera, PerspectiveCameras) |
|
self.assertEqual(len(value.camera), 1) |
|
self.assertIsNone(value.camera.K) |
|
matrix = value.camera.get_projection_transform().get_matrix() |
|
self.assertClose(matrix, known_matrix, atol=1e-4) |
|
self.assertIsInstance(value, FrameData) |
|
|
|
def test_llff(self): |
|
if inside_re_worker: |
|
return |
|
expand_args_fields(LlffDatasetMapProvider) |
|
|
|
provider = LlffDatasetMapProvider( |
|
base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern", |
|
object_name="fern", |
|
downscale_factor=8, |
|
) |
|
dataset_map = provider.get_dataset_map() |
|
known_matrix = torch.zeros(1, 4, 4) |
|
known_matrix[0, 0, 0] = 2.1564 |
|
known_matrix[0, 1, 1] = 2.1564 |
|
known_matrix[0, 2, 3] = 1 |
|
known_matrix[0, 3, 2] = 1 |
|
|
|
for name, length, frame_type in [ |
|
("train", 17, "known"), |
|
("test", 3, "unseen"), |
|
("val", 3, "unseen"), |
|
]: |
|
dataset = getattr(dataset_map, name) |
|
self.assertEqual(len(dataset), length) |
|
|
|
value = dataset[0] |
|
self.assertIsInstance(value, FrameData) |
|
self.assertEqual(value.frame_type, frame_type) |
|
self.assertEqual(value.image_rgb.shape, (3, 378, 504)) |
|
self.assertIsInstance(value.camera, PerspectiveCameras) |
|
self.assertEqual(len(value.camera), 1) |
|
self.assertIsNone(value.camera.K) |
|
matrix = value.camera.get_projection_transform().get_matrix() |
|
self.assertClose(matrix, known_matrix, atol=1e-4) |
|
|
|
self.assertEqual(len(dataset_map.test.get_eval_batches()), 3) |
|
for batch in dataset_map.test.get_eval_batches(): |
|
self.assertEqual(len(batch), 1) |
|
self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen") |
|
|
|
def test_include_known_frames(self): |
|
if inside_re_worker: |
|
return |
|
expand_args_fields(LlffDatasetMapProvider) |
|
|
|
provider = LlffDatasetMapProvider( |
|
base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern", |
|
object_name="fern", |
|
n_known_frames_for_test=2, |
|
) |
|
dataset_map = provider.get_dataset_map() |
|
|
|
for name, types in [ |
|
("train", ["known"] * 17), |
|
("val", ["unseen"] * 3 + ["known"] * 17), |
|
("test", ["unseen"] * 3 + ["known"] * 17), |
|
]: |
|
dataset = getattr(dataset_map, name) |
|
self.assertEqual(len(dataset), len(types)) |
|
for i, frame_type in enumerate(types): |
|
value = dataset[i] |
|
self.assertEqual(value.frame_type, frame_type) |
|
self.assertIsNone(value.fg_probability) |
|
|
|
self.assertEqual(len(dataset_map.test.get_eval_batches()), 3) |
|
for batch in dataset_map.test.get_eval_batches(): |
|
self.assertEqual(len(batch), 3) |
|
self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen") |
|
for i in batch[1:]: |
|
self.assertEqual(dataset_map.test[i].frame_type, "known") |
|
|
|
def test_loaders(self): |
|
if inside_re_worker: |
|
return |
|
args = get_default_args(ImplicitronDataSource) |
|
args.dataset_map_provider_class_type = "BlenderDatasetMapProvider" |
|
dataset_args = args.dataset_map_provider_BlenderDatasetMapProvider_args |
|
dataset_args.object_name = "lego" |
|
dataset_args.base_dir = "manifold://co3d/tree/nerf_data/nerf_synthetic/lego" |
|
|
|
data_source = ImplicitronDataSource(**args) |
|
_, data_loaders = data_source.get_datasets_and_dataloaders() |
|
for i in data_loaders.train: |
|
self.assertEqual(i.frame_type, ["known"]) |
|
self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800)) |
|
for i in data_loaders.val: |
|
self.assertEqual(i.frame_type, ["unseen"]) |
|
self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800)) |
|
for i in data_loaders.test: |
|
self.assertEqual(i.frame_type, ["unseen"]) |
|
self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800)) |
|
|
|
cameras = data_source.all_train_cameras |
|
self.assertIsInstance(cameras, PerspectiveCameras) |
|
self.assertEqual(len(cameras), 100) |
|
|