|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
from pytorch3d.implicitron.tools.point_cloud_utils import get_rgbd_point_cloud |
|
|
|
from pytorch3d.renderer.cameras import PerspectiveCameras |
|
from tests.common_testing import TestCaseMixin |
|
|
|
|
|
class TestPointCloudUtils(TestCaseMixin, unittest.TestCase): |
|
def setUp(self): |
|
torch.manual_seed(42) |
|
|
|
def test_unproject(self): |
|
H, W = 50, 100 |
|
|
|
|
|
|
|
|
|
|
|
image = torch.rand(4, H, W) |
|
depth = 3 |
|
image[3] = depth |
|
image[1, H // 2 :, W // 2 :] *= 0.4 |
|
|
|
|
|
|
|
ndc_camera = PerspectiveCameras(focal_length=1.0) |
|
screen_camera = PerspectiveCameras( |
|
focal_length=H // 2, |
|
in_ndc=False, |
|
image_size=((H, W),), |
|
principal_point=((W / 2, H / 2),), |
|
) |
|
|
|
for camera in (ndc_camera, screen_camera): |
|
|
|
cloud = get_rgbd_point_cloud( |
|
camera, |
|
image_rgb=image[:3][None], |
|
depth_map=image[3:][None], |
|
euclidean=False, |
|
) |
|
[points] = cloud.points_list() |
|
self.assertConstant(points[:, 2], depth) |
|
extremes = depth * torch.tensor([W / H - 1 / H, 1 - 1 / H]) |
|
self.assertClose(points[:, :2].min(0).values, -extremes) |
|
self.assertClose(points[:, :2].max(0).values, extremes) |
|
|
|
|
|
cloud = get_rgbd_point_cloud( |
|
camera, |
|
image_rgb=image[:3][None], |
|
depth_map=image[3:][None], |
|
euclidean=True, |
|
) |
|
[points] = cloud.points_list() |
|
self.assertConstant(torch.norm(points, dim=1), depth, atol=1e-5) |
|
|
|
|
|
get_rgbd_point_cloud( |
|
camera, |
|
image_rgb=image[None], |
|
depth_map=image[3:][None], |
|
euclidean=True, |
|
) |
|
|