|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import pytorch3d as pt3d |
|
import torch |
|
from pytorch3d.implicitron.models.view_pooler.view_sampler import ViewSampler |
|
from pytorch3d.implicitron.tools.config import expand_args_fields |
|
|
|
|
|
class TestViewsampling(unittest.TestCase): |
|
def setUp(self): |
|
torch.manual_seed(42) |
|
expand_args_fields(ViewSampler) |
|
|
|
def _init_view_sampler_problem(self, random_masks): |
|
""" |
|
Generates a view-sampling problem: |
|
- 4 source views, 1st/2nd from the first sequence 'seq1', the rest from 'seq2' |
|
- 3 sets of 3D points from sequences 'seq1', 'seq2', 'seq2' respectively. |
|
- first 50 points in each batch correctly project to the source views, |
|
while the remaining 50 do not land in any projection plane. |
|
- each source view is labeled with image feature tensors of shape 7x100x50, |
|
where all elements of the n-th tensor are set to `n+1`. |
|
- the elements of the source view masks are either set to random binary number |
|
(if `random_masks==True`), or all set to 1 (`random_masks==False`). |
|
- the source view cameras are uniformly distributed on a unit circle |
|
in the x-z plane and look at (0,0,0). |
|
""" |
|
seq_id_camera = ["seq1", "seq1", "seq2", "seq2"] |
|
seq_id_pts = ["seq1", "seq2", "seq2"] |
|
pts_batch = 3 |
|
n_pts = 100 |
|
n_views = 4 |
|
fdim = 7 |
|
H = 100 |
|
W = 50 |
|
|
|
|
|
pts_inside = ( |
|
torch.nn.functional.normalize( |
|
torch.randn(pts_batch, n_pts // 2, 3, device="cuda"), |
|
dim=-1, |
|
) |
|
* 0.1 |
|
) |
|
|
|
|
|
pts_outside = pts_inside.clone() |
|
pts_outside[:, :, 1] += 1e8 |
|
pts = torch.cat([pts_inside, pts_outside], dim=1) |
|
|
|
R, T = pt3d.renderer.look_at_view_transform( |
|
dist=1.0, |
|
elev=0.0, |
|
azim=torch.linspace(0, 360, n_views + 1)[:n_views], |
|
degrees=True, |
|
device=pts.device, |
|
) |
|
focal_length = R.new_ones(n_views, 2) |
|
principal_point = R.new_zeros(n_views, 2) |
|
camera = pt3d.renderer.PerspectiveCameras( |
|
R=R, |
|
T=T, |
|
focal_length=focal_length, |
|
principal_point=principal_point, |
|
device=pts.device, |
|
) |
|
|
|
feats_map = torch.arange(n_views, device=pts.device, dtype=pts.dtype) + 1 |
|
feats = {"feats": feats_map[:, None, None, None].repeat(1, fdim, H, W)} |
|
|
|
masks = ( |
|
torch.rand(n_views, 1, H, W, device=pts.device, dtype=pts.dtype) > 0.5 |
|
).type_as(R) |
|
|
|
if not random_masks: |
|
masks[:] = 1.0 |
|
|
|
return pts, camera, feats, masks, seq_id_camera, seq_id_pts |
|
|
|
def test_compare_with_naive(self): |
|
""" |
|
Compares the outputs of the efficient ViewSampler module with a |
|
naive implementation. |
|
""" |
|
|
|
( |
|
pts, |
|
camera, |
|
feats, |
|
masks, |
|
seq_id_camera, |
|
seq_id_pts, |
|
) = self._init_view_sampler_problem(True) |
|
|
|
for masked_sampling in (True, False): |
|
feats_sampled_n, masks_sampled_n = _view_sample_naive( |
|
pts, |
|
seq_id_pts, |
|
camera, |
|
seq_id_camera, |
|
feats, |
|
masks, |
|
masked_sampling, |
|
) |
|
|
|
expand_args_fields(ViewSampler) |
|
view_sampler = ViewSampler(masked_sampling=masked_sampling) |
|
feats_sampled, masks_sampled = view_sampler( |
|
pts=pts, |
|
seq_id_pts=seq_id_pts, |
|
camera=camera, |
|
seq_id_camera=seq_id_camera, |
|
feats=feats, |
|
masks=masks, |
|
) |
|
for k in feats_sampled.keys(): |
|
self.assertTrue(torch.allclose(feats_sampled[k], feats_sampled_n[k])) |
|
self.assertTrue(torch.allclose(masks_sampled, masks_sampled_n)) |
|
|
|
def test_viewsampling(self): |
|
""" |
|
Generates a viewsampling problem with predictable outcome, and compares |
|
the ViewSampler's output to the expected result. |
|
""" |
|
|
|
( |
|
pts, |
|
camera, |
|
feats, |
|
masks, |
|
seq_id_camera, |
|
seq_id_pts, |
|
) = self._init_view_sampler_problem(False) |
|
|
|
expand_args_fields(ViewSampler) |
|
|
|
for masked_sampling in (True, False): |
|
|
|
view_sampler = ViewSampler(masked_sampling=masked_sampling) |
|
|
|
feats_sampled, masks_sampled = view_sampler( |
|
pts=pts, |
|
seq_id_pts=seq_id_pts, |
|
camera=camera, |
|
seq_id_camera=seq_id_camera, |
|
feats=feats, |
|
masks=masks, |
|
) |
|
|
|
n_views = camera.R.shape[0] |
|
n_pts = pts.shape[1] |
|
feat_dim = feats["feats"].shape[1] |
|
pts_batch = pts.shape[0] |
|
n_pts_away = n_pts // 2 |
|
|
|
for pts_i in range(pts_batch): |
|
for view_i in range(n_views): |
|
if seq_id_pts[pts_i] != seq_id_camera[view_i]: |
|
|
|
gt_masks = pts.new_zeros(n_pts, 1) |
|
gt_feats = pts.new_zeros(n_pts, feat_dim) |
|
else: |
|
gt_masks = pts.new_ones(n_pts, 1) |
|
gt_feats = pts.new_ones(n_pts, feat_dim) * (view_i + 1) |
|
gt_feats[n_pts_away:] = 0.0 |
|
if masked_sampling: |
|
gt_masks[n_pts_away:] = 0.0 |
|
|
|
for k in feats_sampled: |
|
self.assertTrue( |
|
torch.allclose( |
|
feats_sampled[k][pts_i, view_i], |
|
gt_feats, |
|
) |
|
) |
|
self.assertTrue( |
|
torch.allclose( |
|
masks_sampled[pts_i, view_i], |
|
gt_masks, |
|
) |
|
) |
|
|
|
|
|
def _view_sample_naive( |
|
pts, |
|
seq_id_pts, |
|
camera, |
|
seq_id_camera, |
|
feats, |
|
masks, |
|
masked_sampling, |
|
): |
|
""" |
|
A naive implementation of the forward pass of ViewSampler. |
|
Refer to ViewSampler's docstring for description of the arguments. |
|
""" |
|
|
|
pts_batch = pts.shape[0] |
|
n_views = camera.R.shape[0] |
|
n_pts = pts.shape[1] |
|
|
|
feats_sampled = [[[] for _ in range(n_views)] for _ in range(pts_batch)] |
|
masks_sampled = [[[] for _ in range(n_views)] for _ in range(pts_batch)] |
|
|
|
for pts_i in range(pts_batch): |
|
for view_i in range(n_views): |
|
if seq_id_pts[pts_i] != seq_id_camera[view_i]: |
|
|
|
feats_sampled_ = { |
|
k: f.new_zeros(n_pts, f.shape[1]) for k, f in feats.items() |
|
} |
|
masks_sampled_ = masks.new_zeros(n_pts, 1) |
|
else: |
|
|
|
feats_sampled_, masks_sampled_ = _sample_one_view_naive( |
|
camera[view_i], |
|
pts[pts_i], |
|
{k: f[view_i] for k, f in feats.items()}, |
|
masks[view_i], |
|
masked_sampling, |
|
sampling_mode="bilinear", |
|
) |
|
feats_sampled[pts_i][view_i] = feats_sampled_ |
|
masks_sampled[pts_i][view_i] = masks_sampled_ |
|
|
|
masks_sampled_cat = torch.stack([torch.stack(m) for m in masks_sampled]) |
|
feats_sampled_cat = {} |
|
for k in feats_sampled[0][0].keys(): |
|
feats_sampled_cat[k] = torch.stack( |
|
[torch.stack([f_[k] for f_ in f]) for f in feats_sampled] |
|
) |
|
return feats_sampled_cat, masks_sampled_cat |
|
|
|
|
|
def _sample_one_view_naive( |
|
camera, |
|
pts, |
|
feats, |
|
masks, |
|
masked_sampling, |
|
sampling_mode="bilinear", |
|
): |
|
""" |
|
Sample a single source view. |
|
""" |
|
proj_ndc = camera.transform_points(pts[None])[None, ..., :-1] |
|
feats_sampled = { |
|
k: pt3d.renderer.ndc_grid_sample(f[None], proj_ndc, mode=sampling_mode).permute( |
|
0, 3, 1, 2 |
|
)[0, :, :, 0] |
|
for k, f in feats.items() |
|
} |
|
if not masked_sampling: |
|
n_pts = pts.shape[0] |
|
masks_sampled = proj_ndc.new_ones(n_pts, 1) |
|
else: |
|
masks_sampled = pt3d.renderer.ndc_grid_sample( |
|
masks[None], |
|
proj_ndc, |
|
mode=sampling_mode, |
|
align_corners=False, |
|
)[0, 0, 0, :][:, None] |
|
return feats_sampled, masks_sampled |
|
|