import os os.environ["OMP_NUM_THREADS"] = "1" import sys import glob import cv2 import pickle import tqdm import numpy as np import mediapipe as mp from utils.commons.multiprocess_utils import multiprocess_run_tqdm from utils.commons.os_utils import multiprocess_glob from data_gen.utils.mp_feature_extractors.face_landmarker import MediapipeLandmarker import warnings import traceback warnings.filterwarnings('ignore') """ 基于Face_aligment的lm68已被弃用,因为其: 1. 对眼睛部位的预测精度极低 2. 无法在大偏转角度时准确预测被遮挡的下颚线, 导致大角度时3dmm的GT label就是有问题的, 从而影响性能 我们目前转而使用基于mediapipe的lm68 """ # def extract_landmarks(ori_imgs_dir): # print(f'[INFO] ===== extract face landmarks from {ori_imgs_dir} =====') # fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False) # image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.png')) # for image_path in tqdm.tqdm(image_paths): # out_name = image_path.replace("/images_512/", "/lms_2d/").replace(".png",".lms") # if os.path.exists(out_name): # continue # input = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) # [H, W, 3] # input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB) # preds = fa.get_landmarks(input) # if preds is None: # print(f"Skip {image_path} for no face detected") # continue # if len(preds) > 0: # lands = preds[0].reshape(-1, 2)[:,:2] # os.makedirs(os.path.dirname(out_name), exist_ok=True) # np.savetxt(out_name, lands, '%f') # del fa # print(f'[INFO] ===== extracted face landmarks =====') def save_file(name, content): with open(name, "wb") as f: pickle.dump(content, f) def load_file(name): with open(name, "rb") as f: content = pickle.load(f) return content face_landmarker = None def extract_landmark_job(video_name, nerf=False): try: if nerf: out_name = video_name.replace("/raw/", "/processed/").replace(".mp4","/lms_2d.npy") else: out_name = video_name.replace("/video/", "/lms_2d/").replace(".mp4","_lms.npy") if os.path.exists(out_name): # print("out exists, skip...") return try: os.makedirs(os.path.dirname(out_name), exist_ok=True) except: pass global face_landmarker if face_landmarker is None: face_landmarker = MediapipeLandmarker() img_lm478, vid_lm478 = face_landmarker.extract_lm478_from_video_name(video_name) lm478 = face_landmarker.combine_vid_img_lm478_to_lm478(img_lm478, vid_lm478) np.save(out_name, lm478) return True # print("Hahaha, solve one item!!!") except Exception as e: traceback.print_exc() return False def out_exist_job(vid_name): out_name = vid_name.replace("/video/", "/lms_2d/").replace(".mp4","_lms.npy") if os.path.exists(out_name): return None else: return vid_name def get_todo_vid_names(vid_names): if len(vid_names) == 1: # nerf return vid_names todo_vid_names = [] for i, res in multiprocess_run_tqdm(out_exist_job, vid_names, num_workers=128): if res is not None: todo_vid_names.append(res) return todo_vid_names if __name__ == '__main__': import argparse, glob, tqdm, random parser = argparse.ArgumentParser() parser.add_argument("--vid_dir", default='nerf') parser.add_argument("--ds_name", default='data/raw/videos/May.mp4') parser.add_argument("--num_workers", default=2, type=int) parser.add_argument("--process_id", default=0, type=int) parser.add_argument("--total_process", default=1, type=int) parser.add_argument("--reset", action="store_true") parser.add_argument("--load_names", action="store_true") args = parser.parse_args() vid_dir = args.vid_dir ds_name = args.ds_name load_names = args.load_names if ds_name.lower() == 'nerf': # 处理单个视频 vid_names = [vid_dir] out_names = [video_name.replace("/raw/", "/processed/").replace(".mp4","/lms_2d.npy") for video_name in vid_names] else: # 处理整个数据集 if ds_name in ['lrs3_trainval']: vid_name_pattern = os.path.join(vid_dir, "*/*.mp4") elif ds_name in ['TH1KH_512', 'CelebV-HQ']: vid_name_pattern = os.path.join(vid_dir, "*.mp4") elif ds_name in ['lrs2', 'lrs3', 'voxceleb2', 'CMLR']: vid_name_pattern = os.path.join(vid_dir, "*/*/*.mp4") elif ds_name in ["RAVDESS", 'VFHQ']: vid_name_pattern = os.path.join(vid_dir, "*/*/*/*.mp4") else: raise NotImplementedError() vid_names_path = os.path.join(vid_dir, "vid_names.pkl") if os.path.exists(vid_names_path) and load_names: print(f"loading vid names from {vid_names_path}") vid_names = load_file(vid_names_path) else: vid_names = multiprocess_glob(vid_name_pattern) vid_names = sorted(vid_names) if not load_names: print(f"saving vid names to {vid_names_path}") save_file(vid_names_path, vid_names) out_names = [video_name.replace("/video/", "/lms_2d/").replace(".mp4","_lms.npy") for video_name in vid_names] process_id = args.process_id total_process = args.total_process if total_process > 1: assert process_id <= total_process -1 num_samples_per_process = len(vid_names) // total_process if process_id == total_process: vid_names = vid_names[process_id * num_samples_per_process : ] else: vid_names = vid_names[process_id * num_samples_per_process : (process_id+1) * num_samples_per_process] if not args.reset: vid_names = get_todo_vid_names(vid_names) print(f"todo videos number: {len(vid_names)}") fail_cnt = 0 job_args = [(vid_name, ds_name=='nerf') for vid_name in vid_names] for (i, res) in multiprocess_run_tqdm(extract_landmark_job, job_args, num_workers=args.num_workers, desc=f"Root {args.process_id}: extracing MP-based landmark2d"): if res is False: fail_cnt += 1 print(f"finished {i + 1} / {len(vid_names)} = {(i + 1) / len(vid_names):.4f}, failed {fail_cnt} / {i + 1} = {fail_cnt / (i + 1):.4f}") sys.stdout.flush() pass