Commit
·
949332b
1
Parent(s):
3df66e3
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1491.50 +/- 54.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7a7cd0b8dde1fcb19053eddb191ef35641ef8d0b13927242309359a678ad71b
|
3 |
+
size 129244
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fec5d68c790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fec5d68c820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fec5d68c8b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fec5d68c940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fec5d68c9d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fec5d68ca60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fec5d68caf0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fec5d68cb80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fec5d68cc10>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fec5d68cca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fec5d68cd30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fec5d68cdc0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fec5d498380>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1684563099528754701,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMAT1j4wshC/obedPnvJ9j8adC2/1zZ2Pv2gqD0LOYe/17uePw2287oo0ho/NFvKv8oDvL8mfYo//B7NvSVTzz6B+EW+tTkWPqnvIT9XSai8ffIAv4iSqz9maCa/OQfAPzzMLT+8i0HAGMcKPz96ir9w1Ry+ZE4EP4A+MT8W/bE/kz0+PhOjmD8sKv08TBWRv8+naz8Q8s4/1HnePhssiL7PVcS/ZkRHP6imjD5VLqI/7528PkQ+kL5NXiA/dT/SvNQ2Qb/E1AY/Z4FBv8epgT88zC0/vItBwBjHCj8/eoq/PiGev3WUYL8RyRm8QC7AP+lGJj5emQXAfDbvPQozGz/rMpQ/yZYEv3BPPb/Q258/8SAMPg5dur9PH60+P9wTveJoiT+UL8C/82PePob0pL+z+MY7Avx5vg8AX78vzMw8e4q8v7VNqT4Yxwo/P3qKv6WFir4QTke+kWkLP1RDEECykl0/vEkgv2EAtD6B+Fu/5HCcP+Xghj+xWIS/IXswv6XxOD7Vc8k/bsIyP8mj4j8jr6Q/Bu+MvTc9Hj8vSPy+P5A2v3/4Br8m2FI+hl7LPnuKvL+1Tak+XR7sv2WhbD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACJn4c2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV+BUvQAAAAC6Iee/AAAAAAdwhbwAAAAAvvjxPwAAAADOj7s9AAAAADIJ+z8AAAAAlWRMvQAAAADCgfC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWm9NtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIwqdj0AAAAAftj7vwAAAAAFOH+9AAAAAP+r/T8AAAAAYntgPQAAAADYf9o/AAAAAPLbgz0AAAAAbP7nvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtlATUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID+Gti8AAAAAHPn7b8AAAAAUftUvQAAAABeb+k/AAAAAGs89z0AAAAASxD8PwAAAABDf4k9AAAAAD2A+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAp0a2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfHhNPQAAAACqouG/AAAAAC/p/b0AAAAAVBPvPwAAAACVSLw9AAAAABJVAEAAAAAA0ag5PQAAAADunv6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJRKenDR+jOMAWyUTegDjAF0lEdArgJzxd6cAnV9lChoBkdAlWelo+Ofd2gHTegDaAhHQK4F0ILPUrl1fZQoaAZHQJPvrr+o99toB03oA2gIR0CuCFyZSeiBdX2UKGgGR0ByL8BHTZxraAdN6ANoCEdArg1lVxS5y3V9lChoBkdAlNe1ijL0SWgHTegDaAhHQK4PxaVUuL91fZQoaAZHQJLzjGyX2M9oB03oA2gIR0CuEy4jSofkdX2UKGgGR0CVL2UMXrMUaAdN6ANoCEdArhXW27Wd3HV9lChoBkdAhbiw/gR9PWgHTegDaAhHQK4dnVJcxCZ1fZQoaAZHQJGS3T9bX6JoB03oA2gIR0CuITfPgNwzdX2UKGgGR0CPgid4FA3UaAdN6ANoCEdAriSkWqLjxXV9lChoBkdAkwk2VRk3CWgHTegDaAhHQK4nQtkFwDN1fZQoaAZHQJDzxJsfq5doB03oA2gIR0CuLHdr433pdX2UKGgGR0CGgFOu7pV0aAdN6ANoCEdAri7Scf/3nXV9lChoBkdAk9QaAOJ+D2gHTegDaAhHQK4yPct5D7Z1fZQoaAZHQJTVvW5H3DhoB03oA2gIR0CuNOQ0XP7fdX2UKGgGR0CXDmgCwKSgaAdN6ANoCEdArjz1Y+0PYnV9lChoBkdAkP1O5J9RaWgHTegDaAhHQK5AUhkiD/V1fZQoaAZHQJOgLKmsNlRoB03oA2gIR0CuQ65ccENfdX2UKGgGR0CSieo0hvBKaAdN6ANoCEdArkY0078vVXV9lChoBkdAlq/ZSeiBXmgHTegDaAhHQK5LZgy/KyR1fZQoaAZHQJNMCQ1aW5ZoB03oA2gIR0CuTdYb0e2edX2UKGgGR0CPY52gWac7aAdN6ANoCEdArlE8/hVENXV9lChoBkdAhlR6/Zdv9GgHTegDaAhHQK5T+iBXjlx1fZQoaAZHQJPimSDAaehoB03oA2gIR0CuW+ONgjQidX2UKGgGR0CVM4HEMspYaAdN6ANoCEdArl8vJHRTj3V9lChoBkdAlVqDzyz5XWgHTegDaAhHQK5ikwqRU3p1fZQoaAZHQJVpaKjzqbBoB03oA2gIR0CuZTO+yquKdX2UKGgGR0CSrY5z5oGqaAdN6ANoCEdArmpe29cry3V9lChoBkdAlGHPE87p3WgHTegDaAhHQK5srzYEnst1fZQoaAZHQJaclYoy9EloB03oA2gIR0CucBwSzw+ddX2UKGgGR0CWkeZAIIGAaAdN6ANoCEdArnLX0AcT8HV9lChoBkdAldY+TJQtSWgHTegDaAhHQK56+oFV1fV1fZQoaAZHQJhsmj/MnqpoB03oA2gIR0CufhhGYrrgdX2UKGgGR0CWVu8w5/9YaAdN6ANoCEdAroGHdEb5unV9lChoBkdAeO/curZJ1GgHTegDaAhHQK6EHf6XSjR1fZQoaAZHQJe5v9R77bdoB03oA2gIR0CuiTPPszEadX2UKGgGR0CXstxgRbr1aAdN6ANoCEdArouRiAlOXXV9lChoBkdAhugi+UQkHGgHTegDaAhHQK6O8mx+rlx1fZQoaAZHQJRIvtkWhytoB03oA2gIR0CukcHktEofdX2UKGgGR0CVM28mKIi1aAdN6ANoCEdArpnDRrrPdHV9lChoBkdAlQku1jRUm2gHTegDaAhHQK6czNgSey11fZQoaAZHQJZaRQ+EAYJoB03oA2gIR0CuoDJcHGCJdX2UKGgGR0CU1eG8EmpmaAdN6ANoCEdArqLMWZZ0S3V9lChoBkdAldQGShakh2gHTegDaAhHQK6n7cfvF3p1fZQoaAZHQJXg5v3rUspoB03oA2gIR0CuqkCvxH5KdX2UKGgGR0CVkUO9nK4haAdN6ANoCEdArq2x5JK8MHV9lChoBkdAjy1KuB+WnmgHTegDaAhHQK6wtzZpSJl1fZQoaAZHQJFPNaOgg5loB03oA2gIR0CuuNLJSzgNdX2UKGgGR0CP+DLA57w8aAdN6ANoCEdArru4Y77sOXV9lChoBkdAjgQzH0btJGgHTegDaAhHQK6/MHnEETx1fZQoaAZHQJNyO94/u9hoB03oA2gIR0CuwdinYQJ5dX2UKGgGR0CFYacPOIIoaAdN6ANoCEdArscaSFGoaXV9lChoBkdAi1CTS1E3KmgHTegDaAhHQK7JiIldC3R1fZQoaAZHQJPRjhisnzBoB03oA2gIR0CuzO2mYSg5dX2UKGgGR0CUES2ki2UjaAdN6ANoCEdArtAjvG6wuHV9lChoBkdAk+rBoh6jWWgHTegDaAhHQK7YXxZuAI91fZQoaAZHQJfFq8g6ltVoB03oA2gIR0Cu2v4bsF+vdX2UKGgGR0BUiAIMSbpeaAdLwGgIR0Cu2z5NXYDldX2UKGgGR0CXegSNwR5DaAdN6ANoCEdArt5nqkdmx3V9lChoBkdAlM16jJuEVWgHTegDaAhHQK7hD6E8JUp1fZQoaAZHQJb3FVo6CDpoB03oA2gIR0Cu6IuPmxMWdX2UKGgGR0CXBZDBuXNUaAdN6ANoCEdArujHuG9HtnV9lChoBkdAmIblPFefI2gHTegDaAhHQK7sDPWxyGV1fZQoaAZHQJfXNcGC7K9oB03oA2gIR0Cu74YZ2pyZdX2UKGgGR0CWJ91e0G/vaAdN6ANoCEdArvn35P/JeXV9lChoBkdAlpNemm+Cb2gHTegDaAhHQK76NBoEjgR1fZQoaAZHQJazypQ1rIpoB03oA2gIR0Cu/WUM5OrRdX2UKGgGR0CWfbi0v4/NaAdN6ANoCEdArwAYK2KEWnV9lChoBkdAlR0540Mw12gHTegDaAhHQK8Hnm1YyO91fZQoaAZHQJTBFxFRYRxoB03oA2gIR0CvB9iQT238dX2UKGgGR0CVjVGKyfL+aAdN6ANoCEdArwrxlWfbsXV9lChoBkdAkewFgQYk3WgHTegDaAhHQK8OVkOI68x1fZQoaAZHQJUtXs5XEIhoB03oA2gIR0CvGN8TzunddX2UKGgGR0CVXpDM/yG0aAdN6ANoCEdArxkePcSGrXV9lChoBkdAlKCq8+Roy2gHTegDaAhHQK8cOx5cC5p1fZQoaAZHQJYI2jgydnVoB03oA2gIR0CvHtHLRrrPdX2UKGgGR0CWIRqYZ2pyaAdN6ANoCEdAryY6VW0Z33V9lChoBkdAlZ/XVTaTOmgHTegDaAhHQK8mdqk/KQt1fZQoaAZHQJW91U4rBj5oB03oA2gIR0CvKb4LCvX9dX2UKGgGR0CSdyF+uvECaAdN6ANoCEdAry1DfR/mT3V9lChoBkdAkvuvUWl/IGgHTegDaAhHQK83bG/etS11fZQoaAZHQJSHYMy8BdVoB03oA2gIR0CvN6fzJ6ppdX2UKGgGR0CXMzrAxi5NaAdN6ANoCEdArzrRJCjUNXV9lChoBkdAlIjS17Y022gHTegDaAhHQK89gFNcnmd1fZQoaAZHQJWAPlYEGJNoB03oA2gIR0CvRPGqYJE6dX2UKGgGR0CXEXuEmICVaAdN6ANoCEdAr0UvdEb5unV9lChoBkdAk6uH9zfaYmgHTegDaAhHQK9IW2ETQE91fZQoaAZHQJY8FiONo8JoB03oA2gIR0CvS+RNZeRgdX2UKGgGR0CW7I4bCJoCaAdN6ANoCEdAr1ZSVY6nznV9lChoBkdAl0IZQk5ZKWgHTegDaAhHQK9WjR4QjD91fZQoaAZHQJYJujWTX8RoB03oA2gIR0CvWbDwpe/pdX2UKGgGR0CX4T3b212JaAdN6ANoCEdAr1xKM72crnV9lChoBkdAl5Wl4xDb8GgHTegDaAhHQK9jylHjIaN1fZQoaAZHQJcMUplSS/1oB03oA2gIR0CvZAXN1QqJdX2UKGgGR0CWgcI4lyBDaAdN6ANoCEdAr2dGk8A7xXV9lChoBkdAlSeim65G0GgHTegDaAhHQK9q7WI42jx1fZQoaAZHQJaNSteUpuxoB03oA2gIR0CvdRU2kzoEdX2UKGgGR0CVCYlXzUZvaAdN6ANoCEdAr3VPB55Z83V9lChoBkdAl+NeEAYHgWgHTegDaAhHQK94d2FFlTZ1fZQoaAZHQJgw+lSCOFRoB03oA2gIR0CvewfIKc/ddWUu"
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00f761bd32872f32ab3bea8c6611a7698c3ed8df044a9693906e4e28217495d3
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fa52e87f69aef43d797b494f03653d6ec76381b5624e37aa864cd42d39259e4
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fec5d68c790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fec5d68c820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fec5d68c8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fec5d68c940>", "_build": "<function ActorCriticPolicy._build at 0x7fec5d68c9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fec5d68ca60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fec5d68caf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fec5d68cb80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fec5d68cc10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fec5d68cca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fec5d68cd30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fec5d68cdc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fec5d498380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684563099528754701, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMAT1j4wshC/obedPnvJ9j8adC2/1zZ2Pv2gqD0LOYe/17uePw2287oo0ho/NFvKv8oDvL8mfYo//B7NvSVTzz6B+EW+tTkWPqnvIT9XSai8ffIAv4iSqz9maCa/OQfAPzzMLT+8i0HAGMcKPz96ir9w1Ry+ZE4EP4A+MT8W/bE/kz0+PhOjmD8sKv08TBWRv8+naz8Q8s4/1HnePhssiL7PVcS/ZkRHP6imjD5VLqI/7528PkQ+kL5NXiA/dT/SvNQ2Qb/E1AY/Z4FBv8epgT88zC0/vItBwBjHCj8/eoq/PiGev3WUYL8RyRm8QC7AP+lGJj5emQXAfDbvPQozGz/rMpQ/yZYEv3BPPb/Q258/8SAMPg5dur9PH60+P9wTveJoiT+UL8C/82PePob0pL+z+MY7Avx5vg8AX78vzMw8e4q8v7VNqT4Yxwo/P3qKv6WFir4QTke+kWkLP1RDEECykl0/vEkgv2EAtD6B+Fu/5HCcP+Xghj+xWIS/IXswv6XxOD7Vc8k/bsIyP8mj4j8jr6Q/Bu+MvTc9Hj8vSPy+P5A2v3/4Br8m2FI+hl7LPnuKvL+1Tak+XR7sv2WhbD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACJn4c2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV+BUvQAAAAC6Iee/AAAAAAdwhbwAAAAAvvjxPwAAAADOj7s9AAAAADIJ+z8AAAAAlWRMvQAAAADCgfC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWm9NtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIwqdj0AAAAAftj7vwAAAAAFOH+9AAAAAP+r/T8AAAAAYntgPQAAAADYf9o/AAAAAPLbgz0AAAAAbP7nvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtlATUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID+Gti8AAAAAHPn7b8AAAAAUftUvQAAAABeb+k/AAAAAGs89z0AAAAASxD8PwAAAABDf4k9AAAAAD2A+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAp0a2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfHhNPQAAAACqouG/AAAAAC/p/b0AAAAAVBPvPwAAAACVSLw9AAAAABJVAEAAAAAA0ag5PQAAAADunv6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJRKenDR+jOMAWyUTegDjAF0lEdArgJzxd6cAnV9lChoBkdAlWelo+Ofd2gHTegDaAhHQK4F0ILPUrl1fZQoaAZHQJPvrr+o99toB03oA2gIR0CuCFyZSeiBdX2UKGgGR0ByL8BHTZxraAdN6ANoCEdArg1lVxS5y3V9lChoBkdAlNe1ijL0SWgHTegDaAhHQK4PxaVUuL91fZQoaAZHQJLzjGyX2M9oB03oA2gIR0CuEy4jSofkdX2UKGgGR0CVL2UMXrMUaAdN6ANoCEdArhXW27Wd3HV9lChoBkdAhbiw/gR9PWgHTegDaAhHQK4dnVJcxCZ1fZQoaAZHQJGS3T9bX6JoB03oA2gIR0CuITfPgNwzdX2UKGgGR0CPgid4FA3UaAdN6ANoCEdAriSkWqLjxXV9lChoBkdAkwk2VRk3CWgHTegDaAhHQK4nQtkFwDN1fZQoaAZHQJDzxJsfq5doB03oA2gIR0CuLHdr433pdX2UKGgGR0CGgFOu7pV0aAdN6ANoCEdAri7Scf/3nXV9lChoBkdAk9QaAOJ+D2gHTegDaAhHQK4yPct5D7Z1fZQoaAZHQJTVvW5H3DhoB03oA2gIR0CuNOQ0XP7fdX2UKGgGR0CXDmgCwKSgaAdN6ANoCEdArjz1Y+0PYnV9lChoBkdAkP1O5J9RaWgHTegDaAhHQK5AUhkiD/V1fZQoaAZHQJOgLKmsNlRoB03oA2gIR0CuQ65ccENfdX2UKGgGR0CSieo0hvBKaAdN6ANoCEdArkY0078vVXV9lChoBkdAlq/ZSeiBXmgHTegDaAhHQK5LZgy/KyR1fZQoaAZHQJNMCQ1aW5ZoB03oA2gIR0CuTdYb0e2edX2UKGgGR0CPY52gWac7aAdN6ANoCEdArlE8/hVENXV9lChoBkdAhlR6/Zdv9GgHTegDaAhHQK5T+iBXjlx1fZQoaAZHQJPimSDAaehoB03oA2gIR0CuW+ONgjQidX2UKGgGR0CVM4HEMspYaAdN6ANoCEdArl8vJHRTj3V9lChoBkdAlVqDzyz5XWgHTegDaAhHQK5ikwqRU3p1fZQoaAZHQJVpaKjzqbBoB03oA2gIR0CuZTO+yquKdX2UKGgGR0CSrY5z5oGqaAdN6ANoCEdArmpe29cry3V9lChoBkdAlGHPE87p3WgHTegDaAhHQK5srzYEnst1fZQoaAZHQJaclYoy9EloB03oA2gIR0CucBwSzw+ddX2UKGgGR0CWkeZAIIGAaAdN6ANoCEdArnLX0AcT8HV9lChoBkdAldY+TJQtSWgHTegDaAhHQK56+oFV1fV1fZQoaAZHQJhsmj/MnqpoB03oA2gIR0CufhhGYrrgdX2UKGgGR0CWVu8w5/9YaAdN6ANoCEdAroGHdEb5unV9lChoBkdAeO/curZJ1GgHTegDaAhHQK6EHf6XSjR1fZQoaAZHQJe5v9R77bdoB03oA2gIR0CuiTPPszEadX2UKGgGR0CXstxgRbr1aAdN6ANoCEdArouRiAlOXXV9lChoBkdAhugi+UQkHGgHTegDaAhHQK6O8mx+rlx1fZQoaAZHQJRIvtkWhytoB03oA2gIR0CukcHktEofdX2UKGgGR0CVM28mKIi1aAdN6ANoCEdArpnDRrrPdHV9lChoBkdAlQku1jRUm2gHTegDaAhHQK6czNgSey11fZQoaAZHQJZaRQ+EAYJoB03oA2gIR0CuoDJcHGCJdX2UKGgGR0CU1eG8EmpmaAdN6ANoCEdArqLMWZZ0S3V9lChoBkdAldQGShakh2gHTegDaAhHQK6n7cfvF3p1fZQoaAZHQJXg5v3rUspoB03oA2gIR0CuqkCvxH5KdX2UKGgGR0CVkUO9nK4haAdN6ANoCEdArq2x5JK8MHV9lChoBkdAjy1KuB+WnmgHTegDaAhHQK6wtzZpSJl1fZQoaAZHQJFPNaOgg5loB03oA2gIR0CuuNLJSzgNdX2UKGgGR0CP+DLA57w8aAdN6ANoCEdArru4Y77sOXV9lChoBkdAjgQzH0btJGgHTegDaAhHQK6/MHnEETx1fZQoaAZHQJNyO94/u9hoB03oA2gIR0CuwdinYQJ5dX2UKGgGR0CFYacPOIIoaAdN6ANoCEdArscaSFGoaXV9lChoBkdAi1CTS1E3KmgHTegDaAhHQK7JiIldC3R1fZQoaAZHQJPRjhisnzBoB03oA2gIR0CuzO2mYSg5dX2UKGgGR0CUES2ki2UjaAdN6ANoCEdArtAjvG6wuHV9lChoBkdAk+rBoh6jWWgHTegDaAhHQK7YXxZuAI91fZQoaAZHQJfFq8g6ltVoB03oA2gIR0Cu2v4bsF+vdX2UKGgGR0BUiAIMSbpeaAdLwGgIR0Cu2z5NXYDldX2UKGgGR0CXegSNwR5DaAdN6ANoCEdArt5nqkdmx3V9lChoBkdAlM16jJuEVWgHTegDaAhHQK7hD6E8JUp1fZQoaAZHQJb3FVo6CDpoB03oA2gIR0Cu6IuPmxMWdX2UKGgGR0CXBZDBuXNUaAdN6ANoCEdArujHuG9HtnV9lChoBkdAmIblPFefI2gHTegDaAhHQK7sDPWxyGV1fZQoaAZHQJfXNcGC7K9oB03oA2gIR0Cu74YZ2pyZdX2UKGgGR0CWJ91e0G/vaAdN6ANoCEdArvn35P/JeXV9lChoBkdAlpNemm+Cb2gHTegDaAhHQK76NBoEjgR1fZQoaAZHQJazypQ1rIpoB03oA2gIR0Cu/WUM5OrRdX2UKGgGR0CWfbi0v4/NaAdN6ANoCEdArwAYK2KEWnV9lChoBkdAlR0540Mw12gHTegDaAhHQK8Hnm1YyO91fZQoaAZHQJTBFxFRYRxoB03oA2gIR0CvB9iQT238dX2UKGgGR0CVjVGKyfL+aAdN6ANoCEdArwrxlWfbsXV9lChoBkdAkewFgQYk3WgHTegDaAhHQK8OVkOI68x1fZQoaAZHQJUtXs5XEIhoB03oA2gIR0CvGN8TzunddX2UKGgGR0CVXpDM/yG0aAdN6ANoCEdArxkePcSGrXV9lChoBkdAlKCq8+Roy2gHTegDaAhHQK8cOx5cC5p1fZQoaAZHQJYI2jgydnVoB03oA2gIR0CvHtHLRrrPdX2UKGgGR0CWIRqYZ2pyaAdN6ANoCEdAryY6VW0Z33V9lChoBkdAlZ/XVTaTOmgHTegDaAhHQK8mdqk/KQt1fZQoaAZHQJW91U4rBj5oB03oA2gIR0CvKb4LCvX9dX2UKGgGR0CSdyF+uvECaAdN6ANoCEdAry1DfR/mT3V9lChoBkdAkvuvUWl/IGgHTegDaAhHQK83bG/etS11fZQoaAZHQJSHYMy8BdVoB03oA2gIR0CvN6fzJ6ppdX2UKGgGR0CXMzrAxi5NaAdN6ANoCEdArzrRJCjUNXV9lChoBkdAlIjS17Y022gHTegDaAhHQK89gFNcnmd1fZQoaAZHQJWAPlYEGJNoB03oA2gIR0CvRPGqYJE6dX2UKGgGR0CXEXuEmICVaAdN6ANoCEdAr0UvdEb5unV9lChoBkdAk6uH9zfaYmgHTegDaAhHQK9IW2ETQE91fZQoaAZHQJY8FiONo8JoB03oA2gIR0CvS+RNZeRgdX2UKGgGR0CW7I4bCJoCaAdN6ANoCEdAr1ZSVY6nznV9lChoBkdAl0IZQk5ZKWgHTegDaAhHQK9WjR4QjD91fZQoaAZHQJYJujWTX8RoB03oA2gIR0CvWbDwpe/pdX2UKGgGR0CX4T3b212JaAdN6ANoCEdAr1xKM72crnV9lChoBkdAl5Wl4xDb8GgHTegDaAhHQK9jylHjIaN1fZQoaAZHQJcMUplSS/1oB03oA2gIR0CvZAXN1QqJdX2UKGgGR0CWgcI4lyBDaAdN6ANoCEdAr2dGk8A7xXV9lChoBkdAlSeim65G0GgHTegDaAhHQK9q7WI42jx1fZQoaAZHQJaNSteUpuxoB03oA2gIR0CvdRU2kzoEdX2UKGgGR0CVCYlXzUZvaAdN6ANoCEdAr3VPB55Z83V9lChoBkdAl+NeEAYHgWgHTegDaAhHQK94d2FFlTZ1fZQoaAZHQJgw+lSCOFRoB03oA2gIR0CvewfIKc/ddWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cfc12191a9d64151a8b068c3747bff53e4b3e0a9afef9970ae6f6685bccb437
|
3 |
+
size 1031774
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1491.5047501091844, "std_reward": 54.106155239921186, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-20T07:23:11.234415"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e360e2f64a82d4ad117fc9822d111a54fb9223504d0fe8d6be30cfb1fbd3e26
|
3 |
+
size 2176
|