Upload folder using huggingface_hub
Browse files- CODE_OF_CONDUCT.md +9 -0
- LICENSE +22 -62
- README.md +9 -10
- SECURITY.md +41 -0
- config.json +1 -1
- merges.txt +0 -0
- model.safetensors.index.json +250 -0
- vocab.json +0 -0
CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Microsoft Open Source Code of Conduct
|
2 |
+
|
3 |
+
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
|
4 |
+
|
5 |
+
Resources:
|
6 |
+
|
7 |
+
- [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
|
8 |
+
- [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
|
9 |
+
- Contact [[email protected]](mailto:[email protected]) with questions or concerns
|
LICENSE
CHANGED
@@ -1,62 +1,22 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
3) PERSONAL DATA. If the data (set forth in Section 1(c) above) includes or is found to include any data that enables any ability to identify an individual (“Personal Data”), you will not use such Personal Data for any purpose other than was authorized and consented to by the data subject/research participant. You will not use Personal Data to contact any person. You will keep Personal Data in strict confidence. You will not share any Personal Data that is collected or in your possession with any third party for any reason and as required under the original consent agreement. Further, you will destroy the Personal Data and any backup or copies, immediately upon the completion of your research.
|
25 |
-
|
26 |
-
4) LICENSE TO MICROSOFT. Notwithstanding the limitations in Section 1, you may distribute your modifications back to Microsoft, and if you do provide Microsoft with modifications of the Materials, you hereby grant Microsoft, without any restrictions or limitations, a non-exclusive, perpetual, irrevocable, royalty-free, assignable and sub-licensable license, to reproduce, publicly perform or display, install, use, modify, post, distribute, make and have made, sell and transfer such modifications and derivatives for any purpose.
|
27 |
-
|
28 |
-
5) PUBLICATION. You may publish (or present papers or articles) on your results from using the Materials provided that no material or substantial portion of the Materials is included in any such publication or presentation.
|
29 |
-
|
30 |
-
6) FEEDBACK. Any feedback about the Materials provided by you to us is voluntarily given, and Microsoft shall be free to use the feedback as it sees fit without obligation or restriction of any kind, even if the feedback is designated by you as confidential. Such feedback shall be considered a contribution and licensed to Microsoft under the terms of Section 4 above.
|
31 |
-
|
32 |
-
7) COMPLIANCE WITH TRADE LAWS. You acknowledge that the Materials may be subject to applicable trade laws in one or more countries. You will comply with all relevant laws and regulations applicable to the import or export of the Materials, including but not limited to, trade laws such as the U.S. Export Administration Regulations or other end-user, end use, and destination restrictions by the U.S. and other governments, as well as sanctions regulations administered by the U.S. Office of Foreign Assets Control. Microsoft may suspend or terminate the agreement immediately to the extent that Microsoft reasonably concludes that continued performance would violate trade laws or put it at risk of becoming subject to sanctions or penalties under trade laws. For additional information, see www.microsoft.com/exporting.
|
33 |
-
|
34 |
-
8) SUPPORT SERVICES. Microsoft is not obligated under this agreement to provide any support services for the Materials. Any support provided is “as is”, “with all faults”, and without warranty of any kind.
|
35 |
-
|
36 |
-
9) BINDING ARBITRATION AND CLASS ACTION WAIVER. This Section applies if you live in (or, if a business, your principal place of business is in) the United States. If you and Microsoft have a dispute, you and Microsoft agree to try for 60 days to resolve it informally. If you and Microsoft can’t, you and Microsoft agree to binding individual arbitration before the American Arbitration Association under the Federal Arbitration Act (“FAA”), and not to sue in court in front of a judge or jury. Instead, a neutral arbitrator will decide. Class action lawsuits, class-wide arbitrations, private attorney-general actions, and any other proceeding where someone acts in a representative capacity are not allowed; nor is combining individual proceedings without the consent of all parties. The complete Arbitration Agreement contains more terms and is at aka.ms/arb-agreement-1. You and Microsoft agree to these terms.
|
37 |
-
|
38 |
-
10) ENTIRE AGREEMENT. This agreement, and any other terms Microsoft may provide for supplements, updates, or third-party applications, is the entire agreement for the Materials.
|
39 |
-
|
40 |
-
11) APPLICABLE LAW AND PLACE TO RESOLVE DISPUTES. If you acquired the Materials in the United States or Canada, the laws of the state or province where you live (or, if a business, where your principal place of business is located) govern the interpretation of this agreement, claims for its breach, and all other claims (including consumer protection, unfair competition, and tort claims), regardless of conflict of laws principles, except that the FAA governs everything related to arbitration. If you acquired the Materials in any other country, its laws apply, except that the FAA governs everything related to arbitration. If U.S. federal jurisdiction exists, you and Microsoft consent to exclusive jurisdiction and venue in the federal court in King County, Washington for all disputes heard in court (excluding arbitration). If not, you and Microsoft consent to exclusive jurisdiction and venue in the Superior Court of King County, Washington for all disputes heard in court (excluding arbitration).
|
41 |
-
|
42 |
-
12) CONSUMER RIGHTS; REGIONAL VARIATIONS. This agreement describes certain legal rights. You may have other rights, including consumer rights, under the laws of your state, province, or country. Separate and apart from your relationship with Microsoft, you may also have rights with respect to the party from which you acquired the Materials. This agreement does not change those other rights if the laws of your state, province, or country do not permit it to do so. For example, if you acquired the Materials in one of the below regions, or mandatory country law applies, then the following provisions apply to you:
|
43 |
-
|
44 |
-
a) Australia. You have statutory guarantees under the Australian Consumer Law and nothing in this agreement is intended to affect those rights.
|
45 |
-
|
46 |
-
b) Canada. If you acquired this software in Canada, you may stop receiving updates by turning off the automatic update feature, disconnecting your device from the Internet (if and when you re-connect to the Internet, however, the Materials will resume checking for and installing updates), or uninstalling the Materials. The product documentation, if any, may also specify how to turn off updates for your specific device or software.
|
47 |
-
|
48 |
-
c) Germany and Austria.
|
49 |
-
|
50 |
-
i. Warranty. The properly licensed software will perform substantially as described in any Microsoft materials that accompany the Materials. However, Microsoft gives no contractual guarantee in relation to the licensed software.
|
51 |
-
|
52 |
-
ii. Limitation of Liability. In case of intentional conduct, gross negligence, claims based on the Product Liability Act, as well as, in case of death or personal or physical injury, Microsoft is liable according to the statutory law.
|
53 |
-
|
54 |
-
Subject to the foregoing clause (ii), Microsoft will only be liable for slight negligence if Microsoft is in breach of such material contractual obligations, the fulfillment of which facilitate the due performance of this agreement, the breach of which would endanger the purpose of this agreement and the compliance with which a party may constantly trust in (so-called "cardinal obligations"). In other cases of slight negligence, Microsoft will not be liable for slight negligence.
|
55 |
-
|
56 |
-
13) DISCLAIMER OF WARRANTY. THE MATERIALS ARE LICENSED “AS IS.” YOU BEAR THE RISK OF USING THEM. MICROSOFT GIVES NO EXPRESS WARRANTIES, GUARANTEES, OR CONDITIONS. TO THE EXTENT PERMITTED UNDER APPLICABLE LAWS, MICROSOFT EXCLUDES ALL IMPLIED WARRANTIES, INCLUDING MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
|
57 |
-
|
58 |
-
14) LIMITATION ON AND EXCLUSION OF DAMAGES. IF YOU HAVE ANY BASIS FOR RECOVERING DAMAGES DESPITE THE PRECEDING DISCLAIMER OF WARRANTY, YOU CAN RECOVER FROM MICROSOFT AND ITS SUPPLIERS ONLY DIRECT DAMAGES UP TO U.S. $5.00. YOU CANNOT RECOVER ANY OTHER DAMAGES, INCLUDING CONSEQUENTIAL, LOST PROFITS, SPECIAL, INDIRECT OR INCIDENTAL DAMAGES.
|
59 |
-
|
60 |
-
This limitation applies to (a) anything related to the Materials, services, content (including code) on third party Internet sites, or third party applications; and (b) claims for breach of contract, warranty, guarantee, or condition; strict liability, negligence, or other tort; or any other claim; in each case to the extent permitted by applicable law.
|
61 |
-
|
62 |
-
It also applies even if Microsoft knew or should have known about the possibility of the damages. The above limitation or exclusion may not apply to you because your state, province, or country may not allow the exclusion or limitation of incidental, consequential, or other damages.
|
|
|
1 |
+
Microsoft.
|
2 |
+
Copyright (c) Microsoft Corporation.
|
3 |
+
|
4 |
+
MIT License
|
5 |
+
|
6 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
7 |
+
of this software and associated documentation files (the "Software"), to deal
|
8 |
+
in the Software without restriction, including without limitation the rights
|
9 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
10 |
+
copies of the Software, and to permit persons to whom the Software is
|
11 |
+
furnished to do so, subject to the following conditions:
|
12 |
+
|
13 |
+
The above copyright notice and this permission notice shall be included in all
|
14 |
+
copies or substantial portions of the Software.
|
15 |
+
|
16 |
+
THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
17 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
18 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
19 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
20 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
21 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
22 |
+
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
license_link: https://huggingface.co/
|
4 |
language:
|
5 |
- en
|
6 |
pipeline_tag: text-generation
|
@@ -20,7 +20,6 @@ widget:
|
|
20 |
content: How should I explain the Internet?
|
21 |
library_name: transformers
|
22 |
---
|
23 |
-
Note: This model is copied from the official [release](https://aka.ms/phi3-azure-ai) on Azure AI Foundary
|
24 |
|
25 |
# Phi-4 Model Card
|
26 |
|
@@ -37,17 +36,17 @@ Note: This model is copied from the official [release](https://aka.ms/phi3-azure
|
|
37 |
| **Training time** | 21 days |
|
38 |
| **Training data** | 9.8T tokens |
|
39 |
| **Outputs** | Generated text in response to input |
|
40 |
-
| **Dates** | October 2024
|
41 |
| **Status** | Static model trained on an offline dataset with cutoff dates of June 2024 and earlier for publicly available data |
|
42 |
| **Release date** | December 12, 2024 |
|
43 |
-
| **License** |
|
44 |
|
45 |
## Intended Use
|
46 |
|
47 |
| | |
|
48 |
|-------------------------------|-------------------------------------------------------------------------|
|
49 |
| **Primary Use Cases** | Our model is designed to accelerate research on language models, for use as a building block for generative AI powered features. It provides uses for general purpose AI systems and applications (primarily in English) which require:<br><br>1. Memory/compute constrained environments.<br>2. Latency bound scenarios.<br>3. Reasoning and logic. |
|
50 |
-
| **Out-of-Scope Use Cases** | Our models is not specifically designed or evaluated for all downstream purposes, thus:<br><br>1. Developers should consider common limitations of language models as they select use cases, and evaluate and mitigate for accuracy, safety, and fairness before using within a specific downstream use case, particularly for high-risk scenarios.<br>2. Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case, including the model
|
51 |
|
52 |
## Data Overview
|
53 |
|
@@ -57,7 +56,7 @@ Our training data is an extension of the data used for Phi-3 and includes a wide
|
|
57 |
|
58 |
1. Publicly available documents filtered rigorously for quality, selected high-quality educational data, and code.
|
59 |
|
60 |
-
2. Newly created synthetic,
|
61 |
|
62 |
3. Acquired academic books and Q&A datasets.
|
63 |
|
@@ -67,7 +66,7 @@ Multilingual data constitutes about 8% of our overall data. We are focusing on t
|
|
67 |
|
68 |
#### Benchmark datasets
|
69 |
|
70 |
-
We evaluated `phi-4` using [OpenAI
|
71 |
|
72 |
* **MMLU:** Popular aggregated dataset for multitask language understanding.
|
73 |
|
@@ -91,13 +90,13 @@ We evaluated `phi-4` using [OpenAI's SimpleEval](https://github.com/openai/simpl
|
|
91 |
|
92 |
### Safety Evaluation and Red-Teaming
|
93 |
|
94 |
-
Prior to release, `phi-4` followed a multi-faceted evaluation approach. Quantitative evaluation was conducted with multiple open-source safety benchmarks and in-house tools utilizing adversarial conversation simulation. For qualitative safety evaluation, we collaborated with the independent AI Red Team (AIRT) at Microsoft to assess safety risks posed by `phi-4` in both average and adversarial user scenarios. In the average user scenario, AIRT emulated typical single-turn and multi-turn interactions to identify potentially risky behaviors. The adversarial user scenario tested a wide range of techniques aimed at intentionally subverting the model
|
95 |
|
96 |
Please refer to the technical report for more details on safety alignment.
|
97 |
|
98 |
## Model Quality
|
99 |
|
100 |
-
To understand the capabilities, we compare `phi-4` with a set of models over OpenAI
|
101 |
|
102 |
At the high-level overview of the model quality on representative benchmarks. For the table below, higher numbers indicate better performance:
|
103 |
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
license_link: https://huggingface.co/microsoft/phi-4/resolve/main/LICENSE
|
4 |
language:
|
5 |
- en
|
6 |
pipeline_tag: text-generation
|
|
|
20 |
content: How should I explain the Internet?
|
21 |
library_name: transformers
|
22 |
---
|
|
|
23 |
|
24 |
# Phi-4 Model Card
|
25 |
|
|
|
36 |
| **Training time** | 21 days |
|
37 |
| **Training data** | 9.8T tokens |
|
38 |
| **Outputs** | Generated text in response to input |
|
39 |
+
| **Dates** | October 2024 – November 2024 |
|
40 |
| **Status** | Static model trained on an offline dataset with cutoff dates of June 2024 and earlier for publicly available data |
|
41 |
| **Release date** | December 12, 2024 |
|
42 |
+
| **License** | MIT |
|
43 |
|
44 |
## Intended Use
|
45 |
|
46 |
| | |
|
47 |
|-------------------------------|-------------------------------------------------------------------------|
|
48 |
| **Primary Use Cases** | Our model is designed to accelerate research on language models, for use as a building block for generative AI powered features. It provides uses for general purpose AI systems and applications (primarily in English) which require:<br><br>1. Memory/compute constrained environments.<br>2. Latency bound scenarios.<br>3. Reasoning and logic. |
|
49 |
+
| **Out-of-Scope Use Cases** | Our models is not specifically designed or evaluated for all downstream purposes, thus:<br><br>1. Developers should consider common limitations of language models as they select use cases, and evaluate and mitigate for accuracy, safety, and fairness before using within a specific downstream use case, particularly for high-risk scenarios.<br>2. Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case, including the model’s focus on English.<br>3. Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the license the model is released under. |
|
50 |
|
51 |
## Data Overview
|
52 |
|
|
|
56 |
|
57 |
1. Publicly available documents filtered rigorously for quality, selected high-quality educational data, and code.
|
58 |
|
59 |
+
2. Newly created synthetic, “textbook-like” data for the purpose of teaching math, coding, common sense reasoning, general knowledge of the world (science, daily activities, theory of mind, etc.).
|
60 |
|
61 |
3. Acquired academic books and Q&A datasets.
|
62 |
|
|
|
66 |
|
67 |
#### Benchmark datasets
|
68 |
|
69 |
+
We evaluated `phi-4` using [OpenAI’s SimpleEval](https://github.com/openai/simple-evals) and our own internal benchmarks to understand the model’s capabilities, more specifically:
|
70 |
|
71 |
* **MMLU:** Popular aggregated dataset for multitask language understanding.
|
72 |
|
|
|
90 |
|
91 |
### Safety Evaluation and Red-Teaming
|
92 |
|
93 |
+
Prior to release, `phi-4` followed a multi-faceted evaluation approach. Quantitative evaluation was conducted with multiple open-source safety benchmarks and in-house tools utilizing adversarial conversation simulation. For qualitative safety evaluation, we collaborated with the independent AI Red Team (AIRT) at Microsoft to assess safety risks posed by `phi-4` in both average and adversarial user scenarios. In the average user scenario, AIRT emulated typical single-turn and multi-turn interactions to identify potentially risky behaviors. The adversarial user scenario tested a wide range of techniques aimed at intentionally subverting the model’s safety training including jailbreaks, encoding-based attacks, multi-turn attacks, and adversarial suffix attacks.
|
94 |
|
95 |
Please refer to the technical report for more details on safety alignment.
|
96 |
|
97 |
## Model Quality
|
98 |
|
99 |
+
To understand the capabilities, we compare `phi-4` with a set of models over OpenAI’s SimpleEval benchmark.
|
100 |
|
101 |
At the high-level overview of the model quality on representative benchmarks. For the table below, higher numbers indicate better performance:
|
102 |
|
SECURITY.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!-- BEGIN MICROSOFT SECURITY.MD V0.0.9 BLOCK -->
|
2 |
+
|
3 |
+
## Security
|
4 |
+
|
5 |
+
Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet) and [Xamarin](https://github.com/xamarin).
|
6 |
+
|
7 |
+
If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/security.md/definition), please report it to us as described below.
|
8 |
+
|
9 |
+
## Reporting Security Issues
|
10 |
+
|
11 |
+
**Please do not report security vulnerabilities through public GitHub issues.**
|
12 |
+
|
13 |
+
Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/security.md/msrc/create-report).
|
14 |
+
|
15 |
+
If you prefer to submit without logging in, send email to [[email protected]](mailto:[email protected]). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/security.md/msrc/pgp).
|
16 |
+
|
17 |
+
You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc).
|
18 |
+
|
19 |
+
Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
|
20 |
+
|
21 |
+
* Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
|
22 |
+
* Full paths of source file(s) related to the manifestation of the issue
|
23 |
+
* The location of the affected source code (tag/branch/commit or direct URL)
|
24 |
+
* Any special configuration required to reproduce the issue
|
25 |
+
* Step-by-step instructions to reproduce the issue
|
26 |
+
* Proof-of-concept or exploit code (if possible)
|
27 |
+
* Impact of the issue, including how an attacker might exploit the issue
|
28 |
+
|
29 |
+
This information will help us triage your report more quickly.
|
30 |
+
|
31 |
+
If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/security.md/msrc/bounty) page for more details about our active programs.
|
32 |
+
|
33 |
+
## Preferred Languages
|
34 |
+
|
35 |
+
We prefer all communications to be in English.
|
36 |
+
|
37 |
+
## Policy
|
38 |
+
|
39 |
+
Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/security.md/cvd).
|
40 |
+
|
41 |
+
<!-- END MICROSOFT SECURITY.MD BLOCK -->
|
config.json
CHANGED
@@ -24,7 +24,7 @@
|
|
24 |
"rms_norm_eps": 1e-05,
|
25 |
"rope_scaling": null,
|
26 |
"rope_theta": 250000,
|
27 |
-
"sliding_window":
|
28 |
"tie_word_embeddings": false,
|
29 |
"torch_dtype": "bfloat16",
|
30 |
"transformers_version": "4.47.0",
|
|
|
24 |
"rms_norm_eps": 1e-05,
|
25 |
"rope_scaling": null,
|
26 |
"rope_theta": 250000,
|
27 |
+
"sliding_window": null,
|
28 |
"tie_word_embeddings": false,
|
29 |
"torch_dtype": "bfloat16",
|
30 |
"transformers_version": "4.47.0",
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 29319014400
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_up_proj.weight": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.1.mlp.gate_up_proj.weight": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
21 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
22 |
+
"model.layers.10.mlp.gate_up_proj.weight": "model-00002-of-00006.safetensors",
|
23 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
24 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
25 |
+
"model.layers.10.self_attn.qkv_proj.weight": "model-00002-of-00006.safetensors",
|
26 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
27 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
28 |
+
"model.layers.11.mlp.gate_up_proj.weight": "model-00002-of-00006.safetensors",
|
29 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
30 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
31 |
+
"model.layers.11.self_attn.qkv_proj.weight": "model-00002-of-00006.safetensors",
|
32 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
33 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
34 |
+
"model.layers.12.mlp.gate_up_proj.weight": "model-00002-of-00006.safetensors",
|
35 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
36 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
37 |
+
"model.layers.12.self_attn.qkv_proj.weight": "model-00002-of-00006.safetensors",
|
38 |
+
"model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
39 |
+
"model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
40 |
+
"model.layers.13.mlp.gate_up_proj.weight": "model-00003-of-00006.safetensors",
|
41 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
42 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
43 |
+
"model.layers.13.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
|
44 |
+
"model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
45 |
+
"model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
46 |
+
"model.layers.14.mlp.gate_up_proj.weight": "model-00003-of-00006.safetensors",
|
47 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
48 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
49 |
+
"model.layers.14.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
|
50 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
51 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
52 |
+
"model.layers.15.mlp.gate_up_proj.weight": "model-00003-of-00006.safetensors",
|
53 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
54 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
55 |
+
"model.layers.15.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
|
56 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
57 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
58 |
+
"model.layers.16.mlp.gate_up_proj.weight": "model-00003-of-00006.safetensors",
|
59 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
60 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
61 |
+
"model.layers.16.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
|
62 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
63 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
64 |
+
"model.layers.17.mlp.gate_up_proj.weight": "model-00003-of-00006.safetensors",
|
65 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
66 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
67 |
+
"model.layers.17.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
|
68 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
69 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
70 |
+
"model.layers.18.mlp.gate_up_proj.weight": "model-00003-of-00006.safetensors",
|
71 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
72 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
73 |
+
"model.layers.18.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
|
74 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
75 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
76 |
+
"model.layers.19.mlp.gate_up_proj.weight": "model-00003-of-00006.safetensors",
|
77 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
78 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
79 |
+
"model.layers.19.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
|
80 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
81 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
82 |
+
"model.layers.2.mlp.gate_up_proj.weight": "model-00001-of-00006.safetensors",
|
83 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
84 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
85 |
+
"model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00006.safetensors",
|
86 |
+
"model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
87 |
+
"model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
88 |
+
"model.layers.20.mlp.gate_up_proj.weight": "model-00004-of-00006.safetensors",
|
89 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
90 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
91 |
+
"model.layers.20.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
|
92 |
+
"model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
93 |
+
"model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
94 |
+
"model.layers.21.mlp.gate_up_proj.weight": "model-00004-of-00006.safetensors",
|
95 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
96 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
97 |
+
"model.layers.21.self_attn.qkv_proj.weight": "model-00004-of-00006.safetensors",
|
98 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
99 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
100 |
+
"model.layers.22.mlp.gate_up_proj.weight": "model-00004-of-00006.safetensors",
|
101 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
102 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
103 |
+
"model.layers.22.self_attn.qkv_proj.weight": "model-00004-of-00006.safetensors",
|
104 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
105 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
106 |
+
"model.layers.23.mlp.gate_up_proj.weight": "model-00004-of-00006.safetensors",
|
107 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
108 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
109 |
+
"model.layers.23.self_attn.qkv_proj.weight": "model-00004-of-00006.safetensors",
|
110 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
111 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
112 |
+
"model.layers.24.mlp.gate_up_proj.weight": "model-00004-of-00006.safetensors",
|
113 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
114 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
115 |
+
"model.layers.24.self_attn.qkv_proj.weight": "model-00004-of-00006.safetensors",
|
116 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
117 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
118 |
+
"model.layers.25.mlp.gate_up_proj.weight": "model-00004-of-00006.safetensors",
|
119 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
120 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
121 |
+
"model.layers.25.self_attn.qkv_proj.weight": "model-00004-of-00006.safetensors",
|
122 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
123 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
124 |
+
"model.layers.26.mlp.gate_up_proj.weight": "model-00004-of-00006.safetensors",
|
125 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
126 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
127 |
+
"model.layers.26.self_attn.qkv_proj.weight": "model-00004-of-00006.safetensors",
|
128 |
+
"model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
129 |
+
"model.layers.27.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
130 |
+
"model.layers.27.mlp.gate_up_proj.weight": "model-00005-of-00006.safetensors",
|
131 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
132 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
133 |
+
"model.layers.27.self_attn.qkv_proj.weight": "model-00004-of-00006.safetensors",
|
134 |
+
"model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
135 |
+
"model.layers.28.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
136 |
+
"model.layers.28.mlp.gate_up_proj.weight": "model-00005-of-00006.safetensors",
|
137 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
138 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
139 |
+
"model.layers.28.self_attn.qkv_proj.weight": "model-00005-of-00006.safetensors",
|
140 |
+
"model.layers.29.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
141 |
+
"model.layers.29.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
142 |
+
"model.layers.29.mlp.gate_up_proj.weight": "model-00005-of-00006.safetensors",
|
143 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
144 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
145 |
+
"model.layers.29.self_attn.qkv_proj.weight": "model-00005-of-00006.safetensors",
|
146 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
147 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
148 |
+
"model.layers.3.mlp.gate_up_proj.weight": "model-00001-of-00006.safetensors",
|
149 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
150 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
151 |
+
"model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00006.safetensors",
|
152 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
153 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
154 |
+
"model.layers.30.mlp.gate_up_proj.weight": "model-00005-of-00006.safetensors",
|
155 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
156 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
157 |
+
"model.layers.30.self_attn.qkv_proj.weight": "model-00005-of-00006.safetensors",
|
158 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
159 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
160 |
+
"model.layers.31.mlp.gate_up_proj.weight": "model-00005-of-00006.safetensors",
|
161 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
162 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
163 |
+
"model.layers.31.self_attn.qkv_proj.weight": "model-00005-of-00006.safetensors",
|
164 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
165 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
166 |
+
"model.layers.32.mlp.gate_up_proj.weight": "model-00005-of-00006.safetensors",
|
167 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
168 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
169 |
+
"model.layers.32.self_attn.qkv_proj.weight": "model-00005-of-00006.safetensors",
|
170 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
171 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
172 |
+
"model.layers.33.mlp.gate_up_proj.weight": "model-00005-of-00006.safetensors",
|
173 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
174 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
175 |
+
"model.layers.33.self_attn.qkv_proj.weight": "model-00005-of-00006.safetensors",
|
176 |
+
"model.layers.34.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
177 |
+
"model.layers.34.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
178 |
+
"model.layers.34.mlp.gate_up_proj.weight": "model-00006-of-00006.safetensors",
|
179 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
180 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
181 |
+
"model.layers.34.self_attn.qkv_proj.weight": "model-00005-of-00006.safetensors",
|
182 |
+
"model.layers.35.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
183 |
+
"model.layers.35.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
184 |
+
"model.layers.35.mlp.gate_up_proj.weight": "model-00006-of-00006.safetensors",
|
185 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
186 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
187 |
+
"model.layers.35.self_attn.qkv_proj.weight": "model-00006-of-00006.safetensors",
|
188 |
+
"model.layers.36.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
189 |
+
"model.layers.36.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
190 |
+
"model.layers.36.mlp.gate_up_proj.weight": "model-00006-of-00006.safetensors",
|
191 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
192 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
193 |
+
"model.layers.36.self_attn.qkv_proj.weight": "model-00006-of-00006.safetensors",
|
194 |
+
"model.layers.37.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
195 |
+
"model.layers.37.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
196 |
+
"model.layers.37.mlp.gate_up_proj.weight": "model-00006-of-00006.safetensors",
|
197 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
198 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
199 |
+
"model.layers.37.self_attn.qkv_proj.weight": "model-00006-of-00006.safetensors",
|
200 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
201 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
202 |
+
"model.layers.38.mlp.gate_up_proj.weight": "model-00006-of-00006.safetensors",
|
203 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
204 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
205 |
+
"model.layers.38.self_attn.qkv_proj.weight": "model-00006-of-00006.safetensors",
|
206 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
207 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
208 |
+
"model.layers.39.mlp.gate_up_proj.weight": "model-00006-of-00006.safetensors",
|
209 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
210 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
211 |
+
"model.layers.39.self_attn.qkv_proj.weight": "model-00006-of-00006.safetensors",
|
212 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
213 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
214 |
+
"model.layers.4.mlp.gate_up_proj.weight": "model-00001-of-00006.safetensors",
|
215 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
216 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
217 |
+
"model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00006.safetensors",
|
218 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
219 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
220 |
+
"model.layers.5.mlp.gate_up_proj.weight": "model-00001-of-00006.safetensors",
|
221 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
222 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
223 |
+
"model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00006.safetensors",
|
224 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
225 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
226 |
+
"model.layers.6.mlp.gate_up_proj.weight": "model-00002-of-00006.safetensors",
|
227 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
228 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
229 |
+
"model.layers.6.self_attn.qkv_proj.weight": "model-00002-of-00006.safetensors",
|
230 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
231 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
232 |
+
"model.layers.7.mlp.gate_up_proj.weight": "model-00002-of-00006.safetensors",
|
233 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
234 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
235 |
+
"model.layers.7.self_attn.qkv_proj.weight": "model-00002-of-00006.safetensors",
|
236 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
237 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
238 |
+
"model.layers.8.mlp.gate_up_proj.weight": "model-00002-of-00006.safetensors",
|
239 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
240 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
241 |
+
"model.layers.8.self_attn.qkv_proj.weight": "model-00002-of-00006.safetensors",
|
242 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
243 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
244 |
+
"model.layers.9.mlp.gate_up_proj.weight": "model-00002-of-00006.safetensors",
|
245 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
246 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
247 |
+
"model.layers.9.self_attn.qkv_proj.weight": "model-00002-of-00006.safetensors",
|
248 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
249 |
+
}
|
250 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|