update model card README.md
Browse files
README.md
CHANGED
@@ -7,9 +7,24 @@ tags:
|
|
7 |
- generated_from_trainer
|
8 |
datasets:
|
9 |
- mozilla-foundation/common_voice_11_0
|
|
|
|
|
10 |
model-index:
|
11 |
- name: Whisper Tiny hi - Amit Kayal
|
12 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -18,6 +33,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
# Whisper Tiny hi - Amit Kayal
|
19 |
|
20 |
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset.
|
|
|
|
|
|
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -46,9 +64,20 @@ The following hyperparameters were used during training:
|
|
46 |
- training_steps: 5000
|
47 |
- mixed_precision_training: Native AMP
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
### Framework versions
|
50 |
|
51 |
- Transformers 4.26.0.dev0
|
52 |
-
- Pytorch 1.
|
53 |
- Datasets 2.7.1.dev0
|
54 |
- Tokenizers 0.13.2
|
|
|
7 |
- generated_from_trainer
|
8 |
datasets:
|
9 |
- mozilla-foundation/common_voice_11_0
|
10 |
+
metrics:
|
11 |
+
- wer
|
12 |
model-index:
|
13 |
- name: Whisper Tiny hi - Amit Kayal
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Automatic Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: Common Voice 11.0
|
20 |
+
type: mozilla-foundation/common_voice_11_0
|
21 |
+
config: hi
|
22 |
+
split: test
|
23 |
+
args: hi
|
24 |
+
metrics:
|
25 |
+
- name: Wer
|
26 |
+
type: wer
|
27 |
+
value: 43.87825289464634
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
# Whisper Tiny hi - Amit Kayal
|
34 |
|
35 |
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset.
|
36 |
+
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 0.8996
|
38 |
+
- Wer: 43.8783
|
39 |
|
40 |
## Model description
|
41 |
|
|
|
64 |
- training_steps: 5000
|
65 |
- mixed_precision_training: Native AMP
|
66 |
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
70 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|
|
71 |
+
| 0.2401 | 3.04 | 1000 | 0.5760 | 43.9012 |
|
72 |
+
| 0.1308 | 7.02 | 2000 | 0.6318 | 42.4768 |
|
73 |
+
| 0.0399 | 10.05 | 3000 | 0.7560 | 44.2451 |
|
74 |
+
| 0.0098 | 14.04 | 4000 | 0.8422 | 43.4885 |
|
75 |
+
| 0.0153 | 18.02 | 5000 | 0.8996 | 43.8783 |
|
76 |
+
|
77 |
+
|
78 |
### Framework versions
|
79 |
|
80 |
- Transformers 4.26.0.dev0
|
81 |
+
- Pytorch 1.10.0
|
82 |
- Datasets 2.7.1.dev0
|
83 |
- Tokenizers 0.13.2
|