--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision model-index: - name: finalProject results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9890023566378633 - name: Precision type: precision value: 0.9894345375382527 --- # finalProject This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0411 - Accuracy: 0.9890 - F1 Score: 0.9892 - Precision: 0.9894 - Sensitivity: 0.9891 - Specificity: 0.9972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Precision | Sensitivity | Specificity | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:-----------:|:-----------:| | 0.3384 | 1.0 | 30 | 0.2387 | 0.9144 | 0.9163 | 0.9197 | 0.9146 | 0.9781 | | 0.1608 | 2.0 | 60 | 0.1635 | 0.9466 | 0.9476 | 0.9485 | 0.9474 | 0.9865 | | 0.0953 | 3.0 | 90 | 0.0915 | 0.9698 | 0.9703 | 0.9706 | 0.9706 | 0.9924 | | 0.0573 | 4.0 | 120 | 0.1125 | 0.9607 | 0.9617 | 0.9634 | 0.9621 | 0.9901 | | 0.0335 | 5.0 | 150 | 0.0536 | 0.9827 | 0.9831 | 0.9837 | 0.9826 | 0.9957 | | 0.0185 | 6.0 | 180 | 0.0543 | 0.9827 | 0.9830 | 0.9837 | 0.9825 | 0.9957 | | 0.0226 | 7.0 | 210 | 0.0478 | 0.9859 | 0.9861 | 0.9866 | 0.9856 | 0.9965 | | 0.0131 | 8.0 | 240 | 0.0468 | 0.9843 | 0.9846 | 0.9847 | 0.9846 | 0.9961 | | 0.0087 | 9.0 | 270 | 0.0411 | 0.9890 | 0.9892 | 0.9894 | 0.9891 | 0.9972 | | 0.0043 | 10.0 | 300 | 0.0376 | 0.9886 | 0.9888 | 0.9890 | 0.9887 | 0.9971 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3