--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision model-index: - name: swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_13 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9783974862529458 - name: Precision type: precision value: 0.9787264477445259 --- # swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_13 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0796 - Accuracy: 0.9784 - F1 Score: 0.9786 - Precision: 0.9787 - Sensitivity: 0.9790 - Specificity: 0.9946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 100 - eval_batch_size: 100 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 400 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Precision | Sensitivity | Specificity | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:-----------:|:-----------:| | 1.2276 | 0.99 | 19 | 0.5721 | 0.7891 | 0.7955 | 0.8401 | 0.7933 | 0.9454 | | 0.3873 | 1.97 | 38 | 0.2399 | 0.9195 | 0.9195 | 0.9207 | 0.9224 | 0.9796 | | 0.1287 | 2.96 | 57 | 0.2204 | 0.9230 | 0.9237 | 0.9275 | 0.9261 | 0.9806 | | 0.0882 | 4.0 | 77 | 0.1026 | 0.9647 | 0.9649 | 0.9647 | 0.9656 | 0.9911 | | 0.0605 | 4.99 | 96 | 0.0898 | 0.9678 | 0.9683 | 0.9686 | 0.9685 | 0.9919 | | 0.0439 | 5.97 | 115 | 0.0853 | 0.9741 | 0.9746 | 0.9748 | 0.9747 | 0.9935 | | 0.0275 | 6.96 | 134 | 0.0941 | 0.9721 | 0.9724 | 0.9730 | 0.9730 | 0.9930 | | 0.0186 | 8.0 | 154 | 0.0803 | 0.9764 | 0.9767 | 0.9770 | 0.9773 | 0.9941 | | 0.0165 | 8.99 | 173 | 0.0740 | 0.9780 | 0.9782 | 0.9782 | 0.9786 | 0.9945 | | 0.0106 | 9.87 | 190 | 0.0796 | 0.9784 | 0.9786 | 0.9787 | 0.9790 | 0.9946 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3