File size: 9,750 Bytes
6a9ff1a 19f2b5b 6a9ff1a 19f2b5b 6a9ff1a 19f2b5b 6a9ff1a 19f2b5b 6a9ff1a 19f2b5b 6a9ff1a 19f2b5b 6a9ff1a 19f2b5b 6a9ff1a 19f2b5b 6a9ff1a 19f2b5b 6a9ff1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import pandas as pd
import numpy as np
import os
import joblib
from sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.impute import SimpleImputer
from sklearn.metrics import classification_report, accuracy_score, roc_curve, auc
from sklearn.feature_selection import SelectFromModel
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import zscore
from imblearn.over_sampling import SMOTE
import os
os.environ["LOKY_MAX_CPU_COUNT"] = "4" # Cambia "4" por el número de núcleos deseado
# Load dataset
def load_data(file_path):
df = pd.read_excel(file_path, header=1)
return df
# Preprocess data including categorical variables
def preprocess_data_with_categoricals(df):
# Replace -9 with NaN for missing values
df.replace(-9, np.nan, inplace=True)
# Drop columns with >50% missing values
missing_percentage = df.isnull().sum() / len(df) * 100
df = df.drop(columns=missing_percentage[missing_percentage > 50].index)
# Impute missing values
imputer = SimpleImputer(strategy='median')
numeric_cols = df.select_dtypes(include=['number']).columns
df[numeric_cols] = imputer.fit_transform(df[numeric_cols])
# Handle binary variables specifically
if 'Binary diagnosis' in df.columns:
df['Binary diagnosis'] = df['Binary diagnosis'].apply(
lambda x: 1 if str(x).strip().lower() == "ipf" else 0
)
if 'Death' in df.columns:
df['Death'] = df['Death'].apply(
lambda x: 1 if str(x).strip().lower() == "yes" else 0
)
# Apply one-hot encoding to categorical variables
df = apply_one_hot_encoding(df)
# Separate categorical and numerical variables
categorical_cols = df.select_dtypes(include=['object']).columns
numeric_cols = df.select_dtypes(include=['number']).columns
print("Categorical Variables:", categorical_cols.tolist())
print("Numerical Variables:", numeric_cols.tolist())
return df, numeric_cols, categorical_cols
# Apply one-hot encoding to categorical variables
def apply_one_hot_encoding(df):
categorical_cols = df.select_dtypes(include=['object']).columns
df = pd.get_dummies(df, columns=categorical_cols, drop_first=True)
return df
# Remove outliers based on Z-score
def remove_outliers(df, numeric_cols, z_threshold=4):
for col in numeric_cols:
z_scores = zscore(df[col])
df = df[(np.abs(z_scores) < z_threshold) | (pd.isnull(z_scores))]
return df
# Select predictors using feature importance
def select_important_features(X, y, threshold=0.03):
model = RandomForestClassifier(random_state=42)
model.fit(X, y)
selector = SelectFromModel(model, threshold=threshold, prefit=True)
selected_mask = selector.get_support()
selected_features = X.columns[selected_mask]
X_reduced = X.loc[:, selected_features]
return X_reduced, selected_features
# Visualize feature importance
def plot_feature_importance(model, features, target):
importance = model.feature_importances_
sorted_idx = np.argsort(importance)[::-1]
plt.figure(figsize=(10, 6))
sns.barplot(x=importance[sorted_idx], y=np.array(features)[sorted_idx])
plt.title(f'Feature Importance for {target}')
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.tight_layout()
plt.show()
# Visualize overfitting and optimization results
def plot_model_performance(cv_scores, train_scores, test_scores, target ,metric_name="Accuracy"):
plt.figure(figsize=(12, 6))
# Cross-validation scores
plt.subplot(1, 2, 1)
plt.plot(cv_scores, label='Cross-validation scores', marker='o')
plt.title(f'Cross-validation {metric_name} for {target}')
plt.xlabel('Fold')
plt.ylabel(metric_name)
plt.grid(True)
plt.legend()
# Train vs Test comparison
plt.subplot(1, 2, 2)
plt.bar(['Train', 'Test'], [train_scores.mean(), test_scores], color=['blue', 'orange'])
plt.title(f'{metric_name}: Train vs Test')
plt.ylabel(metric_name)
plt.grid(True)
plt.tight_layout()
plt.show()
# Plot ROC-AUC curve
def plot_roc_auc(model, X_test, y_test, target):
y_prob = model.predict_proba(X_test)[:, 1] # Probabilidades para la clase positiva
fpr, tpr, thresholds = roc_curve(y_test, y_prob)
roc_auc = auc(fpr, tpr)
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
plt.plot([0, 1], [0, 1], color='gray', linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title(f'ROC-AUC Curve for {target}')
plt.legend(loc="lower right")
plt.grid(True)
plt.show()
# Save trained model
def save_model(model, target, selected_features):
if not os.path.exists("models"):
os.makedirs("models")
file_name = f"models/{target}_random_forest_model.pkl"
joblib.dump({'model': model, 'features': selected_features}, file_name)
print(f"Model and features saved to {file_name}")
# Main pipeline
def main():
file_path = 'FibroPredCODIFICADA.xlsx'
df = load_data(file_path)
# Include 'ProgressiveDisease' in target columns
target_columns = ['Death', 'Binary diagnosis', 'Necessity of transplantation', 'Progressive disease']
# Define predictors to remove for each target
predictors_to_remove_dict = {
'Death': ['Final diagnosis', 'Transplantation date', 'Cause of death', 'Date of death', 'COD NUMBER','FVC (L) 1 year after diagnosis',
'FVC (%) 1 year after diagnosis','DLCO (%) 1 year after diagnosis'],
'Binary diagnosis': ['ProgressiveDisease', 'Final diagnosis', 'Transplantation date', 'Cause of death', 'Date of death', 'COD NUMBER','Pirfenidone','Nintedanib',
'Antifibrotic Drug','Prednisone','Mycophenolate','FVC (L) 1 year after diagnosis','FVC (%) 1 year after diagnosis',
'DLCO (%) 1 year after diagnosis','RadioWorsening2y'],
'Necessity of transplantation': ['ProgressiveDisease', 'Final diagnosis', 'Transplantation date', 'Cause of death', 'Date of death', 'COD NUMBER','Age at diagnosis'],
'Progressive disease': ['ProgressiveDisease', 'Final diagnosis', 'Transplantation date', 'Cause of death', 'Date of death', 'COD NUMBER', 'FVC (L) 1 year after diagnosis',
'FVC (%) 1 year after diagnosis','DLCO (%) 1 year after diagnosis','RadioWorsening2y']
}
# Preprocess data
df, numeric_cols, categorical_cols = preprocess_data_with_categoricals(df)
for target in target_columns:
print(f"Processing target: {target}")
# Apply outlier removal only for specific targets
if target in ['Necessity of transplantation', 'Progressive disease']:
print(f"Removing outliers for target: {target}")
df = remove_outliers(df, numeric_cols)
# Get predictors to remove for the current target
predictors_to_remove = predictors_to_remove_dict.get(target, [])
X = df[numeric_cols].drop(columns=target_columns + predictors_to_remove, errors='ignore')
y = df[target]
# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Apply SMOTE only for specific targets
if target in ['Binary diagnosis', 'Necessity of transplantation']:
print(f"Applying SMOTE to balance the training set for target: {target}")
smote = SMOTE(random_state=42)
X_train, y_train = smote.fit_resample(X_train, y_train)
# Select important features
X_train_selected, selected_features = select_important_features(X_train, y_train)
X_test_selected = X_test[selected_features]
print(f"Selected predictors for training {target} ({len(selected_features)} predictors): {selected_features.tolist()}")
# Train RandomForest model
model = RandomForestClassifier(n_estimators=300,
max_depth=4,
min_samples_split=10,
min_samples_leaf=10,
class_weight='balanced',
max_features='sqrt',
random_state=42)
model.fit(X_train_selected, y_train)
# Cross-validation to check overfitting
cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
cv_scores = cross_val_score(model, X_train_selected, y_train, cv=cv, scoring='accuracy')
train_scores = cross_val_score(model, X_train_selected, y_train, cv=10, scoring='accuracy')
y_pred_test = model.predict(X_test_selected)
test_score = accuracy_score(y_test, y_pred_test)
print(f"Cross-validation accuracy for {target}: {cv_scores.mean():.4f} (+/- {cv_scores.std():.4f})")
print(f"Test accuracy for {target}: {test_score:.4f}")
print(classification_report(y_test, y_pred_test))
# Plot model performance
plot_model_performance(cv_scores, train_scores, test_score, target, metric_name="Accuracy")
# Plot feature importance
print(f"Feature importance for {target}:")
plot_feature_importance(model, selected_features, target)
# Plot ROC-AUC Curve
plot_roc_auc(model, X_test_selected, y_test, target)
# Save trained model
save_model(model, target, selected_features.tolist())
print("Pipeline completed.")
if __name__ == "__main__":
main()
|