File size: 9,750 Bytes
6a9ff1a
 
 
 
 
 
 
 
 
 
 
19f2b5b
 
 
 
 
6a9ff1a
 
 
 
 
 
19f2b5b
6a9ff1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19f2b5b
 
 
 
 
 
6a9ff1a
 
 
 
 
 
19f2b5b
 
 
 
6a9ff1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19f2b5b
 
 
 
 
 
 
 
 
 
 
 
 
 
6a9ff1a
 
 
 
 
 
19f2b5b
 
 
 
 
 
 
 
 
6a9ff1a
 
 
 
 
19f2b5b
 
 
 
 
6a9ff1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19f2b5b
6a9ff1a
19f2b5b
6a9ff1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import pandas as pd
import numpy as np
import os
import joblib
from sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.impute import SimpleImputer
from sklearn.metrics import classification_report, accuracy_score, roc_curve, auc
from sklearn.feature_selection import SelectFromModel
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import zscore
from imblearn.over_sampling import SMOTE
import os
os.environ["LOKY_MAX_CPU_COUNT"] = "4"  # Cambia "4" por el número de núcleos deseado


# Load dataset
def load_data(file_path):
    df = pd.read_excel(file_path, header=1)
    return df


# Preprocess data including categorical variables
def preprocess_data_with_categoricals(df):
    # Replace -9 with NaN for missing values
    df.replace(-9, np.nan, inplace=True)

    # Drop columns with >50% missing values
    missing_percentage = df.isnull().sum() / len(df) * 100
    df = df.drop(columns=missing_percentage[missing_percentage > 50].index)

    # Impute missing values
    imputer = SimpleImputer(strategy='median')
    numeric_cols = df.select_dtypes(include=['number']).columns
    df[numeric_cols] = imputer.fit_transform(df[numeric_cols])

    # Handle binary variables specifically
    if 'Binary diagnosis' in df.columns:
        df['Binary diagnosis'] = df['Binary diagnosis'].apply(
            lambda x: 1 if str(x).strip().lower() == "ipf" else 0
        )

    if 'Death' in df.columns:
        df['Death'] = df['Death'].apply(
            lambda x: 1 if str(x).strip().lower() == "yes" else 0
        )

    # Apply one-hot encoding to categorical variables
    df = apply_one_hot_encoding(df)

    # Separate categorical and numerical variables
    categorical_cols = df.select_dtypes(include=['object']).columns
    numeric_cols = df.select_dtypes(include=['number']).columns
    print("Categorical Variables:", categorical_cols.tolist())
    print("Numerical Variables:", numeric_cols.tolist())
    return df, numeric_cols, categorical_cols

# Apply one-hot encoding to categorical variables
def apply_one_hot_encoding(df):
    categorical_cols = df.select_dtypes(include=['object']).columns
    df = pd.get_dummies(df, columns=categorical_cols, drop_first=True)
    return df
# Remove outliers based on Z-score
def remove_outliers(df, numeric_cols, z_threshold=4):
    for col in numeric_cols:
        z_scores = zscore(df[col])
        df = df[(np.abs(z_scores) < z_threshold) | (pd.isnull(z_scores))]
    return df

# Select predictors using feature importance
def select_important_features(X, y, threshold=0.03):
    model = RandomForestClassifier(random_state=42)
    model.fit(X, y)
    selector = SelectFromModel(model, threshold=threshold, prefit=True)
    selected_mask = selector.get_support()
    selected_features = X.columns[selected_mask]
    X_reduced = X.loc[:, selected_features]
    return X_reduced, selected_features

# Visualize feature importance
def plot_feature_importance(model, features, target):
    importance = model.feature_importances_
    sorted_idx = np.argsort(importance)[::-1]
    plt.figure(figsize=(10, 6))
    sns.barplot(x=importance[sorted_idx], y=np.array(features)[sorted_idx])
    plt.title(f'Feature Importance for {target}')
    plt.xlabel('Importance')
    plt.ylabel('Feature')
    plt.tight_layout()
    plt.show()

# Visualize overfitting and optimization results
def plot_model_performance(cv_scores, train_scores, test_scores, target ,metric_name="Accuracy"):
    plt.figure(figsize=(12, 6))

    # Cross-validation scores
    plt.subplot(1, 2, 1)
    plt.plot(cv_scores, label='Cross-validation scores', marker='o')
    plt.title(f'Cross-validation {metric_name} for {target}')
    plt.xlabel('Fold')
    plt.ylabel(metric_name)
    plt.grid(True)
    plt.legend()

    # Train vs Test comparison
    plt.subplot(1, 2, 2)
    plt.bar(['Train', 'Test'], [train_scores.mean(), test_scores], color=['blue', 'orange'])
    plt.title(f'{metric_name}: Train vs Test')
    plt.ylabel(metric_name)
    plt.grid(True)

    plt.tight_layout()
    plt.show()

# Plot ROC-AUC curve
def plot_roc_auc(model, X_test, y_test, target):
    y_prob = model.predict_proba(X_test)[:, 1]  # Probabilidades para la clase positiva
    fpr, tpr, thresholds = roc_curve(y_test, y_prob)
    roc_auc = auc(fpr, tpr)

    plt.figure(figsize=(8, 6))
    plt.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
    plt.plot([0, 1], [0, 1], color='gray', linestyle='--')
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title(f'ROC-AUC Curve for {target}')
    plt.legend(loc="lower right")
    plt.grid(True)
    plt.show()

# Save trained model
def save_model(model, target, selected_features):
    if not os.path.exists("models"):
        os.makedirs("models")
    file_name = f"models/{target}_random_forest_model.pkl"
    joblib.dump({'model': model, 'features': selected_features}, file_name)
    print(f"Model and features saved to {file_name}")

# Main pipeline
def main():
    file_path = 'FibroPredCODIFICADA.xlsx'
    df = load_data(file_path)

    # Include 'ProgressiveDisease' in target columns
    target_columns = ['Death', 'Binary diagnosis', 'Necessity of transplantation', 'Progressive disease']

    # Define predictors to remove for each target
    predictors_to_remove_dict = {
        'Death': ['Final diagnosis', 'Transplantation date', 'Cause of death', 'Date of death', 'COD NUMBER','FVC (L) 1 year after diagnosis',
                  'FVC (%) 1 year after diagnosis','DLCO (%) 1 year after diagnosis'],
        'Binary diagnosis': ['ProgressiveDisease', 'Final diagnosis', 'Transplantation date', 'Cause of death', 'Date of death', 'COD NUMBER','Pirfenidone','Nintedanib',
                             'Antifibrotic Drug','Prednisone','Mycophenolate','FVC (L) 1 year after diagnosis','FVC (%) 1 year after diagnosis',
                             'DLCO (%) 1 year after diagnosis','RadioWorsening2y'],
        'Necessity of transplantation': ['ProgressiveDisease', 'Final diagnosis', 'Transplantation date', 'Cause of death', 'Date of death', 'COD NUMBER','Age at diagnosis'],
        'Progressive disease': ['ProgressiveDisease', 'Final diagnosis', 'Transplantation date', 'Cause of death', 'Date of death', 'COD NUMBER', 'FVC (L) 1 year after diagnosis',
                               'FVC (%) 1 year after diagnosis','DLCO (%) 1 year after diagnosis','RadioWorsening2y']
    }

    # Preprocess data
    df, numeric_cols, categorical_cols = preprocess_data_with_categoricals(df)

    for target in target_columns:
        print(f"Processing target: {target}")
        # Apply outlier removal only for specific targets
        if target in ['Necessity of transplantation', 'Progressive disease']:
            print(f"Removing outliers for target: {target}")
            df = remove_outliers(df, numeric_cols)

        # Get predictors to remove for the current target
        predictors_to_remove = predictors_to_remove_dict.get(target, [])

        X = df[numeric_cols].drop(columns=target_columns + predictors_to_remove, errors='ignore')
        y = df[target]

        # Split data
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

        # Apply SMOTE only for specific targets
        if target in ['Binary diagnosis', 'Necessity of transplantation']:
            print(f"Applying SMOTE to balance the training set for target: {target}")
            smote = SMOTE(random_state=42)
            X_train, y_train = smote.fit_resample(X_train, y_train)
        # Select important features
        X_train_selected, selected_features = select_important_features(X_train, y_train)
        X_test_selected = X_test[selected_features]

        print(f"Selected predictors for training {target} ({len(selected_features)} predictors): {selected_features.tolist()}")

        # Train RandomForest model
        model = RandomForestClassifier(n_estimators=300,
            max_depth=4, 
            min_samples_split=10, 
            min_samples_leaf=10,
            class_weight='balanced',
            max_features='sqrt',
            random_state=42)
        model.fit(X_train_selected, y_train)

        # Cross-validation to check overfitting
        cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
        cv_scores = cross_val_score(model, X_train_selected, y_train, cv=cv, scoring='accuracy')
        train_scores = cross_val_score(model, X_train_selected, y_train, cv=10, scoring='accuracy')
        y_pred_test = model.predict(X_test_selected)
        test_score = accuracy_score(y_test, y_pred_test)

        print(f"Cross-validation accuracy for {target}: {cv_scores.mean():.4f} (+/- {cv_scores.std():.4f})")
        print(f"Test accuracy for {target}: {test_score:.4f}")
        print(classification_report(y_test, y_pred_test))

        # Plot model performance
        plot_model_performance(cv_scores, train_scores, test_score, target, metric_name="Accuracy")

        # Plot feature importance
        print(f"Feature importance for {target}:")
        plot_feature_importance(model, selected_features, target)

        # Plot ROC-AUC Curve
        plot_roc_auc(model, X_test_selected, y_test, target)

        # Save trained model
        save_model(model, target, selected_features.tolist())

    print("Pipeline completed.")

if __name__ == "__main__":
    main()