amornpan commited on
Commit
120ded9
·
verified ·
1 Parent(s): b0e475c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +150 -143
README.md CHANGED
@@ -1,202 +1,209 @@
1
  ---
2
- base_model: Qwen/Qwen2.5-32B-Instruct
3
- library_name: peft
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
 
 
 
18
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
61
 
62
- [More Information Needed]
 
 
63
 
64
- ### Recommendations
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
 
 
 
 
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
 
 
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
 
 
 
 
154
 
155
- ### Model Architecture and Objective
 
 
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
 
 
162
 
163
- #### Hardware
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
 
 
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
 
 
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
194
 
195
- [More Information Needed]
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
 
 
 
 
 
 
198
 
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
- - PEFT 0.13.3.dev0
 
 
 
1
  ---
2
+ base_model:
3
+ - Qwen/Qwen2.5-32B-Instruct
4
+ datasets:
5
+ - Thaweewat/thai-med-pack
6
+ language:
7
+ - th
8
+ - en
9
+ library_name: transformers
10
+ license: apache-2.0
11
+ pipeline_tag: text-generation
12
+ tags:
13
+ - text-generation-inference
14
+ - sft
15
+ - trl
16
+ - 4-bit precision
17
+ - bitsandbytes
18
+ - LoRA
19
+ - Fine-Tuning with LoRA
20
+ - LLM
21
+ - GenAI
22
+ - medical
23
+ - medtech
24
+ - HealthGPT
25
+ - minddatatech.com
26
+ - NT Academy
27
+ new_version: amornpan/openthaigpt-MedChatModelv11
28
  ---
29
 
30
+ # 🇹🇭 **Model Card for Qwen2.5-32B-Instruct-medical-tuned**
 
31
  <!-- Provide a quick summary of what the model is/does. -->
32
 
33
+ ## <font color="blue">ℹ️ This version is significantly better than OpenThaiGPT!.</font>
34
 
35
+ ## Qwen2.5-32B-Instruct for Thai Medical QA
36
 
37
+ This model is fine-tuned from `Qwen2.5-32B-Instruct` using Supervised Fine-Tuning (SFT) on the `Thaweewat/thai-med-pack` dataset. It is designed for medical question-answering tasks in Thai, providing accurate and contextual answers based on medical information.
 
 
 
 
38
 
39
+ ## Model Description
40
+ This model was fine-tuned using Supervised Fine-Tuning (SFT) to enhance its capabilities for medical question answering in Thai. The base model is `Qwen2.5-32B-Instruct`, which has been optimized with domain-specific knowledge using the `Thaweewat/thai-med-pack` dataset.
41
 
42
+ - **Model type:** Causal Language Model (AutoModelForCausalLM)
43
+ - **Language(s):** Thai
44
+ - **License:** Apache License 2.0
45
+ - **Fine-tuned from model:** Qwen2.5-32B-Instruct
46
+ - **Dataset used for fine-tuning:** Thaweewat/thai-med-pack
47
 
48
+ ### Model Sources
 
 
 
 
 
 
49
 
50
+ - **Repository:** https://huggingface.co/amornpan
51
+ - **Citing Repository:** https://huggingface.co/Aekanun
52
+ - **Base Model:** https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
53
+ - **Dataset:** https://huggingface.co/datasets/Thaweewat/thai-med-pack
 
 
 
54
 
55
  ## Uses
56
 
 
 
57
  ### Direct Use
58
+ The model can be used directly for generating medical responses in Thai. It has been optimized for:
59
+ - Medical question-answering
60
+ - Providing clinical information
61
+ - Health-related dialogue generation
62
 
63
+ ### Downstream Use
64
+ This model serves as a foundational model for medical assistance systems, chatbots, and applications related to healthcare in the Thai language.
 
 
 
 
 
 
 
65
 
66
  ### Out-of-Scope Use
67
+ - This model should not be used for real-time diagnosis or emergency medical scenarios.
68
+ - It should not be relied upon for critical clinical decisions without human oversight, as it is not intended to replace professional medical advice.
 
 
69
 
70
  ## Bias, Risks, and Limitations
71
 
72
+ ### Bias
73
+ - The model may reflect biases present in the dataset, especially regarding underrepresented medical conditions or topics.
74
 
75
+ ### Risks
76
+ - Responses may contain inaccuracies due to the model's inherent limitations and the dataset used for fine-tuning.
77
+ - The model should not be used as the sole source of medical advice.
78
 
79
+ ### Limitations
80
+ - Primarily limited to the medical domain.
81
+ - Sensitive to prompts and may generate off-topic responses for non-medical queries.
82
 
83
+ ## Model Training Results:
84
 
85
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/umzKEBp8lxBCp4nEieIIl.png)
86
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/Z0pU0MVz4AhSq3B5dT_fn.png)
87
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/c_lqB3jiJl_Os-l7j-7NB.png)
88
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/IwyhjvmDO5WdQZvZEWT9J.png)
89
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/gXjnNDSPw01VEWTBbr-2Z.png)
90
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/V5WPYa27EOiEcxelgBJEd.png)
91
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/KKM2qxjbnsu-ixImTWJgu.png)
92
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/sTE-lYpLR9YLG3b8OdCdt.png)
93
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/jYV5qz_ZPFvZW7P-Q1BGy.png)
94
 
95
  ## How to Get Started with the Model
96
 
97
+ This section provides a step-by-step guide to loading and using the model for generating medical responses in Thai.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
 
99
+ ### 1. Install the Required Packages
100
 
101
+ Ensure that you have installed the required libraries:
102
 
103
+ ```python
104
+ pip install torch transformers accelerate bitsandbytes
105
+ pip install --upgrade transformers huggingface_hub
106
 
107
+ [!pip install bitsandbytes --upgrade]
108
 
109
+ [!pip install --upgrade transformers huggingface_hub]
110
+ ```
111
+ ## 2. Load the Model and Tokenizer
112
 
113
+ You can load the model and tokenizer directly from Hugging Face using the following code:
 
 
 
 
114
 
115
+ ```python
116
+ import torch
117
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
118
+ ```
119
+ # Define the model path
120
+ model_path = 'amornpan/Qwen2.5-32B-MedChatModel'
121
 
122
+ # Load the tokenizer and model
123
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
124
+ tokenizer.pad_token = tokenizer.eos_token
125
 
126
+ ## 3. Prepare Your Input (Custom Prompt)
127
 
128
+ Create a custom medical prompt that you want the model to respond to:
129
 
130
+ ```python
131
+ custom_prompt = "อาการของโรคเบาหวานมีอะไรบ้าง"
132
+ PROMPT = f'[INST] <คุณเป็นผู้ช่วยตอบคำถามทางการแพทย์ จงตอบคำถามอย่างถูกต้องและให้ข้อมูลที่เป็นประโยชน์ที่สุด<> {custom_prompt} [/INST]'
133
 
134
+ # Tokenize the input prompt
135
+ inputs = tokenizer(PROMPT, return_tensors="pt", padding=True, truncation=True)
136
+ ```
137
 
138
+ ## 4. Configure the Model for Efficient Loading (4-bit Quantization)
139
 
140
+ The model uses 4-bit precision for efficient inference. Here’s how to set up the configuration:
141
 
142
+ ```python
143
+ bnb_config = BitsAndBytesConfig(
144
+ load_in_4bit=True,
145
+ bnb_4bit_quant_type="nf4",
146
+ bnb_4bit_compute_dtype=torch.float16
147
+ )
148
+ ```
149
 
150
+ ## 5. Load the Model with Quantization Support
151
 
152
+ Now, load the model with the 4-bit quantization settings:
153
 
154
+ ```python
155
+ model = AutoModelForCausalLM.from_pretrained(
156
+ model_path,
157
+ quantization_config=bnb_config,
158
+ trust_remote_code=True
159
+ )
160
+ ```
161
 
162
+ ## 6. Move the Model and Inputs to the GPU (prefer GPU)
163
 
164
+ For faster inference, move the model and input tensors to a GPU, if available:
165
 
166
+ ```python
167
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
168
+ model.to(device)
169
+ inputs = {k: v.to(device) for k, v in inputs.items()}
170
+ ```
171
 
172
+ ## 7. Generate a Response from the Model
173
 
174
+ Now, generate the medical response by running the model:
175
 
176
+ ```python
177
+ outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True)
178
+ ```
179
 
180
+ ## 8. Decode the Generated Text
181
 
182
+ Finally, decode and print the response from the model:
183
 
184
+ ```python
185
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
186
+ print(generated_text)
187
+ ```
188
 
189
+ ## 9. Output
190
+ ```python
191
+ คำถาม: การรักษาโรคความดันโลหิตสูงทำอย่างไร
192
+ คำตอบ: สวัสดี ความดันโลหิตสูงสามารถรักษาได้โดยการใช้ยาหลายชนิด เช่น เบนโซเพอรีซิน, อะโมโลนิด, ลิโซโปรตาซอล, อีลาฟอร์เท็ต,
193
+ อัลฟูราลิท, อะเซติซิลดิโพราเมต, อาราคานา, อาเนอโรนิก, อาเซติซิลสัมพันธ์, อาเนอโรนิก, อะเซติซิลสัมพันธ์ เป็นต้น
194
+ คุณสามารถปรึกษาแพทย์ผู้เชี่ยวชาญในเรื่องนี้เพื่อทราบข้อมูลเพิ่มเติมเกี่ยวกับยาดังกล่าว หวังว่าคำตอบของฉันจะเป็นประโยชน์สำหรับคุณ
195
+ ขอให้คุณมีสุขภาพที่ดี ขอบคุณที่เลือกใช้บริการของเรา หากคุณมีคำถามใด ๆ
196
 
197
+ คำถาม: ยา Paracetamol มีผลข้างเคียงอะไรบ้าง
198
+ คำตอบ: Paracetamol เป็นยาแก้ปวดและลดไข้ที่ใช้กันอย่างแพร่หลาย ซึ่งมีผลข้างเคียงน้อยกว่ายาแก้ปวดชนิดอื่นๆ โดยทั่วไปจะไม่มีผลข้างเคียงใดๆ
199
+ หากใช้ในขนาดที่แนะนำ แต่อาจพบได้ เช่น ปวดท้อง อาเจียน และรู้สึกคลื่นไส้ นอกจากนี้ หากใช้ในปริมาณที่มากเกินไป อาจทำให้มีอาการปัสสาวะขุ่น
200
+ มีสีเหลืองเข้ม เบื่ออาหาร คลื่นไส้ อาเจียน ปวดท้อง ปวดหัว ตาเหลือง หรือปัสสาวะสีเข้มเป็นสีชาโคล่า
201
+ หากมีอาการดังกล่าวควรหยุดการใช้ยาและรีบไปพบแพทย์เพื่อตรวจหาความเสียหายของตับจากยา
202
+ โดยการตรวจการทำงานของตับ ซึ่งหากพบว่ามีอาการของโรคตับวายเฉียบพลัน
203
+ ```
204
 
205
+ ### 👤 **Authors**
 
206
 
207
+ * Amornpan Phornchaicharoen (amornpan@gmail.com)
208
+ * Aekanun Thongtae ([email protected])
209
+ * Montita Somsoo ([email protected])