--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Zouk Capital invests £35 million into Energy Park through CIIF financing - text: Volkswagen Sets Ambitious Goals for Electric Vehicle Production - text: LATAM Unveils New Dreamliner Economy Cabin Design - text: Emirates Announces Additional Flights for Eid Al Fitr - text: Japan Airlines Unveils ‘MYAKU-MYAKU’ Dreamliner Livery metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: false base_model: thenlper/gte-small model-index: - name: SetFit with thenlper/gte-small results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.4864864864864865 name: Accuracy --- # SetFit with thenlper/gte-small This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [thenlper/gte-small](https://huggingface.co/thenlper/gte-small) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [thenlper/gte-small](https://huggingface.co/thenlper/gte-small) - **Classification head:** a OneVsRestClassifier instance - **Maximum Sequence Length:** 512 tokens ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.4865 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("amplyfi/gte-small_all-labels_multilabel") # Run inference preds = model("LATAM Unveils New Dreamliner Economy Cabin Design") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 4 | 9.9616 | 30 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (2, 2) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 5 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0018 | 1 | 0.3005 | - | | 0.0903 | 50 | 0.2933 | - | | 0.1805 | 100 | 0.2219 | - | | 0.2708 | 150 | 0.1568 | - | | 0.3610 | 200 | 0.1334 | - | | 0.4513 | 250 | 0.1204 | - | | 0.5415 | 300 | 0.1215 | - | | 0.6318 | 350 | 0.1154 | - | | 0.7220 | 400 | 0.1065 | - | | 0.8123 | 450 | 0.0935 | - | | 0.9025 | 500 | 0.0892 | - | | 0.9928 | 550 | 0.0807 | - | | 1.0830 | 600 | 0.0776 | - | | 1.1733 | 650 | 0.0716 | - | | 1.2635 | 700 | 0.06 | - | | 1.3538 | 750 | 0.0677 | - | | 1.4440 | 800 | 0.0607 | - | | 1.5343 | 850 | 0.065 | - | | 1.6245 | 900 | 0.0593 | - | | 1.7148 | 950 | 0.0622 | - | | 1.8051 | 1000 | 0.064 | - | | 1.8953 | 1050 | 0.0624 | - | | 1.9856 | 1100 | 0.0667 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.42.2 - PyTorch: 2.5.1+cu124 - Datasets: 3.1.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```