File size: 1,943 Bytes
1202584
 
 
 
 
 
 
 
 
 
 
10dfd6b
 
1202584
 
 
 
 
 
 
10dfd6b
1202584
4aa3f8f
 
1202584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa3f8f
 
 
 
 
 
1202584
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: MoritzLaurer/deberta-v3-large-zeroshot-v2.0
library_name: peft
license: mit
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: fine-tuned-MoritzLaurer-deberta-v3-large-zeroshot-v2.0-arcchallenge
  results: []
datasets:
- allenai/ai2_arc
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine-tuned-MoritzLaurer-deberta-v3-large-zeroshot-v2.0-arcchallenge

This model is a fine-tuned version of [MoritzLaurer/deberta-v3-large-zeroshot-v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0) on ARC-Challenge dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6476
- Accuracy: 0.6087

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 70   | 0.9709          | 0.6421   |
| No log        | 2.0   | 140  | 1.0093          | 0.6321   |
| No log        | 3.0   | 210  | 1.2280          | 0.6455   |
| No log        | 4.0   | 280  | 1.4439          | 0.6355   |
| No log        | 5.0   | 350  | 1.6110          | 0.6120   |
| No log        | 6.0   | 420  | 1.6476          | 0.6087   |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1