File size: 1,928 Bytes
4e3bc11 81e3949 4e3bc11 81e3949 4e3bc11 398d08a 4e3bc11 480e7f1 4e3bc11 81e3949 4e3bc11 81e3949 4e3bc11 81e3949 4e3bc11 81e3949 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
base_model: MoritzLaurer/deberta-v3-large-zeroshot-v2.0
library_name: peft
license: mit
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: fine-tuned-MoritzLaurer-deberta-v3-large-zeroshot-v2.0-arceasy
results: []
datasets:
- allenai/ai2_arc
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine-tuned-MoritzLaurer-deberta-v3-large-zeroshot-v2.0-arceasy
This model is a fine-tuned version of [MoritzLaurer/deberta-v3-large-zeroshot-v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0) on ARC-Easy dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7638
- Accuracy: 0.8368
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 141 | 0.4862 | 0.8281 |
| No log | 2.0 | 282 | 0.4829 | 0.8439 |
| No log | 3.0 | 423 | 0.6579 | 0.8456 |
| 0.3419 | 4.0 | 564 | 0.6815 | 0.8404 |
| 0.3419 | 5.0 | 705 | 0.7499 | 0.8404 |
| 0.3419 | 6.0 | 846 | 0.7638 | 0.8368 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |