amritpuhan commited on
Commit
32bd1ac
1 Parent(s): ec53597

End of training

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: bert-base-uncased
7
+ datasets:
8
+ - swag
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: fine-tuned-bert-base-uncased-swag-peft
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # fine-tuned-bert-base-uncased-swag-peft
20
+
21
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.7296
24
+ - Accuracy: 0.7193
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 1.5e-05
44
+ - train_batch_size: 64
45
+ - eval_batch_size: 64
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 4
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 1.0301 | 1.0 | 1150 | 0.8275 | 0.6817 |
56
+ | 0.9302 | 2.0 | 2300 | 0.7588 | 0.7089 |
57
+ | 0.898 | 3.0 | 3450 | 0.7368 | 0.7175 |
58
+ | 0.8831 | 4.0 | 4600 | 0.7296 | 0.7193 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - PEFT 0.11.1
64
+ - Transformers 4.41.2
65
+ - Pytorch 2.3.1+cu121
66
+ - Datasets 2.19.2
67
+ - Tokenizers 0.19.1