--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: bert-base-uncased datasets: - swag metrics: - accuracy model-index: - name: fine-tuned-bert-base-uncased-swag-peft results: [] --- # fine-tuned-bert-base-uncased-swag-peft This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 0.6557 - Accuracy: 0.7483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0316 | 1.0 | 1150 | 0.8202 | 0.6860 | | 0.9261 | 2.0 | 2300 | 0.7423 | 0.7144 | | 0.8862 | 3.0 | 3450 | 0.7114 | 0.7268 | | 0.8612 | 4.0 | 4600 | 0.6924 | 0.7347 | | 0.8637 | 5.0 | 5750 | 0.6819 | 0.7393 | | 0.8541 | 6.0 | 6900 | 0.6691 | 0.7441 | | 0.8369 | 7.0 | 8050 | 0.6635 | 0.7464 | | 0.8349 | 8.0 | 9200 | 0.6591 | 0.7475 | | 0.8302 | 9.0 | 10350 | 0.6572 | 0.7483 | | 0.8333 | 10.0 | 11500 | 0.6557 | 0.7483 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1