anamikac2708 commited on
Commit
eca8745
·
verified ·
1 Parent(s): 4341399

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -179
README.md CHANGED
@@ -1,199 +1,101 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
 
10
 
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
 
 
 
 
 
 
 
102
 
103
  ## Evaluation
104
 
105
  <!-- This section describes the evaluation protocols and provides the results. -->
 
 
106
 
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - en
4
+ license: cc-by-nc-4.0
5
+ tags:
6
+ - text-generation-inference
7
+ - transformers
8
+ - unsloth
9
+ - gemma
10
+ - trl
11
+ - finlang
12
+ - dora
13
+ base_model: mistralai/Mistral-7B-v0.1
14
  ---
15
 
16
+ # Uploaded model
17
 
18
+ - **Developed by:** anamikac2708
19
+ - **License:** cc-by-nc-4.0
20
+ - **Finetuned from model :** mistralai/Mistral-7B-v0.1
21
 
22
+ This Mistral model was trained Huggingface's TRL library and DoRA (https://arxiv.org/abs/2402.09353) using open-sourced finance dataset https://huggingface.co/datasets/FinLang/investopedia-instruction-tuning-dataset developed for finance application by FinLang Team
23
 
24
+ This paper proposes Weight-Decomposed LowRank Adaptation which decomposes the pre-trained weight into two components, magnitude and direction, for fine-tuning, specifically
25
+ employing LoRA for directional updates to efficiently minimize the number of trainable parameters. Therefore can enhance both the learning capacity and training stability of LoRA while avoiding any additional inference overhead.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  ## How to Get Started with the Model
28
 
29
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
30
+ ```python
31
+ import torch
32
+ from unsloth import FastLanguageModel
33
+ from transformers import AutoTokenizer, pipeline
34
+ peft_model_id = "anamikac2708/Mistral-7B-DORA-finetuned-investopedia-Lora-Adapters"
35
+ # Load Model with PEFT adapter
36
+ model = AutoPeftModelForCausalLM.from_pretrained(
37
+ peft_model_id,
38
+ device_map="auto",
39
+ torch_dtype=torch.float16,
40
+ #load_in_4bit = True
41
+ )
42
+ tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
43
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
44
+ example = [{'content': 'You are a financial expert and you can answer any questions related to finance. You will be given a context and a question. Understand the given context and\n try to answer. Users will ask you questions in English and you will generate answer based on the provided CONTEXT.\n CONTEXT:\n D. in Forced Migration from the University of the Witwatersrand (Wits) in Johannesburg, South Africa; A postgraduate diploma in Folklore & Cultural Studies at Indira Gandhi National Open University (IGNOU) in New Delhi, India; A Masters of International Affairs at Columbia University; A BA from Barnard College at Columbia University\n', 'role': 'system'}, {'content': ' In which universities did the individual obtain their academic qualifications?\n', 'role': 'user'}, {'content': ' University of the Witwatersrand (Wits) in Johannesburg, South Africa; Indira Gandhi National Open University (IGNOU) in New Delhi, India; Columbia University; Barnard College at Columbia University.', 'role': 'assistant'}]
45
+ prompt = pipe.tokenizer.apply_chat_template(example[:2], tokenize=False, add_generation_prompt=True)
46
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.1, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.pad_token_id)
47
+ print(f"Query:\n{example[1]['content']}")
48
+ print(f"Context:\n{example[0]['content']}")
49
+ print(f"Original Answer:\n{example[2]['content']}")
50
+ print(f"Generated Answer:\n{outputs[0]['generated_text'][len(prompt):].strip()}")
51
+ ```
52
 
53
  ## Training Details
54
+ ```
55
+ Peft Config :
56
+
57
+ {
58
+ 'Technqiue' : 'QLORA',
59
+ 'rank': 256,
60
+ 'target_modules' : ["q_proj", "k_proj", "v_proj", "o_proj","gate_proj", "up_proj", "down_proj",],
61
+ 'lora_alpha' : 128,
62
+ 'lora_dropout' : 0,
63
+ 'bias': "none",
64
+ }
65
+
66
+ Hyperparameters:
67
+
68
+ {
69
+ "epochs": 3,
70
+ "evaluation_strategy": "epoch",
71
+ "gradient_checkpointing": True,
72
+ "max_grad_norm" : 0.3,
73
+ "optimizer" : "adamw_torch_fused",
74
+ "learning_rate" : 2e-5,
75
+ "lr_scheduler_type": "constant",
76
+ "warmup_ratio" : 0.03,
77
+ "per_device_train_batch_size" : 4,
78
+ "per_device_eval_batch_size" : 4,
79
+ "gradient_accumulation_steps" : 4
80
+ }
81
+ ```
82
+
83
+ ## Model was trained on 1xA100 80GB, below loss and memory consmuption details:
84
+ {'eval_loss': 0.946821391582489, 'eval_runtime': 840.1526, 'eval_samples_per_second': 0.801, 'eval_steps_per_second': 0.401, 'epoch': 3.0}
85
+ {'train_runtime': 64796.4597, 'train_samples_per_second': 0.246, 'train_steps_per_second': 0.031, 'train_loss': 0.709615581515563, 'epoch': 3.0}
86
 
87
  ## Evaluation
88
 
89
  <!-- This section describes the evaluation protocols and provides the results. -->
90
+ We evaluated the model on test set (sample 1k) https://huggingface.co/datasets/FinLang/investopedia-instruction-tuning-dataset. Evaluation was done using Proprietary LLMs as jury on four criteria Correctness, Faithfullness, Clarity, Completeness on scale of 1-5 (1 being worst & 5 being best) inspired by the paper Replacing Judges with Juries https://arxiv.org/abs/2404.18796. Model got an average score of 4.48.
91
+ Average inference speed of the model is 37 secs. Human Evaluation is in progress to see the percentage of alignment between human and LLM.
92
 
93
+ ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
96
+ This model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking into ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
97
 
98
+ ## License
99
 
100
+ Since non-commercial datasets are used for fine-tuning, we release this model as cc-by-nc-4.0.
101