ananthrgv commited on
Commit
b223690
·
1 Parent(s): 75f0853

End of training

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - funsd
6
+ model-index:
7
+ - name: ananth-docai1
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ananth-docai1
15
+
16
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.7024
19
+ - Answer: {'precision': 0.7113513513513513, 'recall': 0.8133498145859085, 'f1': 0.7589388696655133, 'number': 809}
20
+ - Header: {'precision': 0.30952380952380953, 'recall': 0.3277310924369748, 'f1': 0.31836734693877555, 'number': 119}
21
+ - Question: {'precision': 0.7811387900355872, 'recall': 0.8244131455399061, 'f1': 0.8021927820922796, 'number': 1065}
22
+ - Overall Precision: 0.7241
23
+ - Overall Recall: 0.7903
24
+ - Overall F1: 0.7558
25
+ - Overall Accuracy: 0.8106
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 3e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 15
51
+ - mixed_precision_training: Native AMP
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 1.7944 | 1.0 | 10 | 1.6233 | {'precision': 0.01929260450160772, 'recall': 0.014833127317676144, 'f1': 0.016771488469601678, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.27685325264750377, 'recall': 0.17183098591549295, 'f1': 0.2120509849362688, 'number': 1065} | 0.1520 | 0.0978 | 0.1190 | 0.3505 |
58
+ | 1.5001 | 2.0 | 20 | 1.2971 | {'precision': 0.11125, 'recall': 0.1100123609394314, 'f1': 0.11062771908017402, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4044059795436664, 'recall': 0.48262910798122066, 'f1': 0.4400684931506849, 'number': 1065} | 0.2912 | 0.3026 | 0.2968 | 0.5348 |
59
+ | 1.136 | 3.0 | 30 | 0.9852 | {'precision': 0.4911699779249448, 'recall': 0.5500618046971569, 'f1': 0.5189504373177842, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6086587436332768, 'recall': 0.6732394366197183, 'f1': 0.6393223361569326, 'number': 1065} | 0.5562 | 0.5830 | 0.5693 | 0.6941 |
60
+ | 0.8567 | 4.0 | 40 | 0.8143 | {'precision': 0.627744510978044, 'recall': 0.7775030902348579, 'f1': 0.6946438431805633, 'number': 809} | {'precision': 0.06666666666666667, 'recall': 0.01680672268907563, 'f1': 0.026845637583892617, 'number': 119} | {'precision': 0.6987179487179487, 'recall': 0.7164319248826291, 'f1': 0.7074640704682429, 'number': 1065} | 0.6563 | 0.6994 | 0.6772 | 0.7467 |
61
+ | 0.6998 | 5.0 | 50 | 0.7133 | {'precision': 0.6534859521331946, 'recall': 0.7762669962917181, 'f1': 0.7096045197740113, 'number': 809} | {'precision': 0.2, 'recall': 0.11764705882352941, 'f1': 0.14814814814814817, 'number': 119} | {'precision': 0.7243532560214094, 'recall': 0.7624413145539906, 'f1': 0.7429094236047575, 'number': 1065} | 0.6757 | 0.7296 | 0.7016 | 0.7781 |
62
+ | 0.5886 | 6.0 | 60 | 0.6775 | {'precision': 0.648406374501992, 'recall': 0.8046971569839307, 'f1': 0.7181467181467182, 'number': 809} | {'precision': 0.25806451612903225, 'recall': 0.13445378151260504, 'f1': 0.17679558011049723, 'number': 119} | {'precision': 0.712947189097104, 'recall': 0.7859154929577464, 'f1': 0.7476552032157214, 'number': 1065} | 0.6714 | 0.7546 | 0.7106 | 0.7890 |
63
+ | 0.5185 | 7.0 | 70 | 0.6770 | {'precision': 0.6755888650963597, 'recall': 0.7799752781211372, 'f1': 0.7240390131956398, 'number': 809} | {'precision': 0.2079207920792079, 'recall': 0.17647058823529413, 'f1': 0.19090909090909092, 'number': 119} | {'precision': 0.7341337907375644, 'recall': 0.8037558685446009, 'f1': 0.7673688928731511, 'number': 1065} | 0.6851 | 0.7566 | 0.7191 | 0.7955 |
64
+ | 0.4672 | 8.0 | 80 | 0.6729 | {'precision': 0.683083511777302, 'recall': 0.788627935723115, 'f1': 0.7320711417096959, 'number': 809} | {'precision': 0.23300970873786409, 'recall': 0.20168067226890757, 'f1': 0.21621621621621623, 'number': 119} | {'precision': 0.747431506849315, 'recall': 0.819718309859155, 'f1': 0.7819077474249888, 'number': 1065} | 0.6961 | 0.7702 | 0.7313 | 0.8007 |
65
+ | 0.4188 | 9.0 | 90 | 0.6664 | {'precision': 0.6888888888888889, 'recall': 0.8046971569839307, 'f1': 0.74230330672748, 'number': 809} | {'precision': 0.2727272727272727, 'recall': 0.25210084033613445, 'f1': 0.26200873362445415, 'number': 119} | {'precision': 0.7708703374777975, 'recall': 0.8150234741784037, 'f1': 0.792332268370607, 'number': 1065} | 0.7102 | 0.7772 | 0.7422 | 0.8045 |
66
+ | 0.3724 | 10.0 | 100 | 0.6845 | {'precision': 0.6928721174004193, 'recall': 0.8170580964153276, 'f1': 0.7498581962563812, 'number': 809} | {'precision': 0.33, 'recall': 0.2773109243697479, 'f1': 0.30136986301369867, 'number': 119} | {'precision': 0.7818343722172751, 'recall': 0.8244131455399061, 'f1': 0.8025594149908593, 'number': 1065} | 0.7221 | 0.7888 | 0.7540 | 0.8047 |
67
+ | 0.3402 | 11.0 | 110 | 0.6830 | {'precision': 0.7118093174431203, 'recall': 0.8121137206427689, 'f1': 0.7586605080831409, 'number': 809} | {'precision': 0.3090909090909091, 'recall': 0.2857142857142857, 'f1': 0.296943231441048, 'number': 119} | {'precision': 0.787422497785651, 'recall': 0.8347417840375587, 'f1': 0.8103919781221514, 'number': 1065} | 0.7308 | 0.7928 | 0.7605 | 0.8129 |
68
+ | 0.3219 | 12.0 | 120 | 0.6944 | {'precision': 0.7179203539823009, 'recall': 0.8022249690976514, 'f1': 0.7577349678925861, 'number': 809} | {'precision': 0.3220338983050847, 'recall': 0.31932773109243695, 'f1': 0.32067510548523204, 'number': 119} | {'precision': 0.781882145998241, 'recall': 0.8347417840375587, 'f1': 0.8074477747502271, 'number': 1065} | 0.7300 | 0.7908 | 0.7592 | 0.8097 |
69
+ | 0.3004 | 13.0 | 130 | 0.6978 | {'precision': 0.7147540983606557, 'recall': 0.8084054388133498, 'f1': 0.7587006960556845, 'number': 809} | {'precision': 0.33043478260869563, 'recall': 0.31932773109243695, 'f1': 0.32478632478632474, 'number': 119} | {'precision': 0.7890974084003575, 'recall': 0.8291079812206573, 'f1': 0.8086080586080587, 'number': 1065} | 0.7329 | 0.7903 | 0.7605 | 0.8144 |
70
+ | 0.2942 | 14.0 | 140 | 0.7001 | {'precision': 0.7145945945945946, 'recall': 0.8170580964153276, 'f1': 0.7623990772779701, 'number': 809} | {'precision': 0.30708661417322836, 'recall': 0.3277310924369748, 'f1': 0.3170731707317073, 'number': 119} | {'precision': 0.7820284697508897, 'recall': 0.8253521126760563, 'f1': 0.8031064412973961, 'number': 1065} | 0.7256 | 0.7923 | 0.7575 | 0.8108 |
71
+ | 0.2853 | 15.0 | 150 | 0.7024 | {'precision': 0.7113513513513513, 'recall': 0.8133498145859085, 'f1': 0.7589388696655133, 'number': 809} | {'precision': 0.30952380952380953, 'recall': 0.3277310924369748, 'f1': 0.31836734693877555, 'number': 119} | {'precision': 0.7811387900355872, 'recall': 0.8244131455399061, 'f1': 0.8021927820922796, 'number': 1065} | 0.7241 | 0.7903 | 0.7558 | 0.8106 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.25.1
77
+ - Pytorch 1.13.1+cu117
78
+ - Datasets 2.7.1
79
+ - Tokenizers 0.13.2
logs/events.out.tfevents.1671223882.ip-10-160-32-10.23248.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c61eef9e227d85e5c85892d4d04b2c60a83a5e00c8dea81d901577b186b4f911
3
- size 4652
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83a2db32a8a12a3c1afc70f820b341415c10544977e4ae9f678786482d079363
3
+ size 14128
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
6
+ "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
+ "resample": 2,
9
+ "size": {
10
+ "height": 224,
11
+ "width": 224
12
+ },
13
+ "tesseract_config": ""
14
+ }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bae44cb92c1522cd7c9ee240b2d28432edd9fd298ace360b8e24fc319aed423d
3
  size 450608389
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ceed6ed01a377faf36bd072fbcad39b7474e717a6f4a187adf211e7e1f3bda6
3
  size 450608389
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": null,
3
+ "apply_ocr": false,
4
+ "cls_token": "[CLS]",
5
+ "cls_token_box": [
6
+ 0,
7
+ 0,
8
+ 0,
9
+ 0
10
+ ],
11
+ "do_basic_tokenize": true,
12
+ "do_lower_case": true,
13
+ "mask_token": "[MASK]",
14
+ "model_max_length": 512,
15
+ "name_or_path": "microsoft/layoutlmv2-base-uncased",
16
+ "never_split": null,
17
+ "only_label_first_subword": true,
18
+ "pad_token": "[PAD]",
19
+ "pad_token_box": [
20
+ 0,
21
+ 0,
22
+ 0,
23
+ 0
24
+ ],
25
+ "pad_token_label": -100,
26
+ "processor_class": "LayoutLMv2Processor",
27
+ "sep_token": "[SEP]",
28
+ "sep_token_box": [
29
+ 1000,
30
+ 1000,
31
+ 1000,
32
+ 1000
33
+ ],
34
+ "special_tokens_map_file": null,
35
+ "strip_accents": null,
36
+ "tokenize_chinese_chars": true,
37
+ "tokenizer_class": "LayoutLMv2Tokenizer",
38
+ "unk_token": "[UNK]"
39
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff