Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
---
|
2 |
language: ar
|
3 |
datasets:
|
4 |
-
- common_voice
|
5 |
- common_voice: Common Voice Corpus 4
|
6 |
metrics:
|
7 |
- wer
|
@@ -52,15 +51,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
52 |
# Preprocessing the datasets.
|
53 |
# We need to read the aduio files as arrays
|
54 |
def speech_file_to_array_fn(batch):
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
60 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
61 |
|
62 |
with torch.no_grad():
|
63 |
-
|
64 |
|
65 |
predicted_ids = torch.argmax(logits, dim=-1)
|
66 |
|
@@ -87,31 +86,44 @@ processor = Wav2Vec2Processor.from_pretrained("anas/wav2vec2-large-xlsr-arabic")
|
|
87 |
model = Wav2Vec2ForCTC.from_pretrained("anas/wav2vec2-large-xlsr-arabic/")
|
88 |
model.to("cuda")
|
89 |
|
90 |
-
chars_to_ignore_regex = '[
|
91 |
|
92 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
93 |
|
94 |
# Preprocessing the datasets.
|
95 |
# We need to read the aduio files as arrays
|
96 |
def speech_file_to_array_fn(batch):
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
103 |
|
104 |
# Preprocessing the datasets.
|
105 |
# We need to read the aduio files as arrays
|
106 |
def evaluate(batch):
|
107 |
-
|
108 |
|
109 |
-
|
110 |
-
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
|
116 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
117 |
|
|
|
1 |
---
|
2 |
language: ar
|
3 |
datasets:
|
|
|
4 |
- common_voice: Common Voice Corpus 4
|
5 |
metrics:
|
6 |
- wer
|
|
|
51 |
# Preprocessing the datasets.
|
52 |
# We need to read the aduio files as arrays
|
53 |
def speech_file_to_array_fn(batch):
|
54 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
55 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
56 |
+
return batch
|
57 |
|
58 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
59 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
60 |
|
61 |
with torch.no_grad():
|
62 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
63 |
|
64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
65 |
|
|
|
86 |
model = Wav2Vec2ForCTC.from_pretrained("anas/wav2vec2-large-xlsr-arabic/")
|
87 |
model.to("cuda")
|
88 |
|
89 |
+
chars_to_ignore_regex = '[\,\؟\.\!\-\;\\:\'\"\☭\«\»\؛\—\ـ\_\،\“\%\‘\”\�]'
|
90 |
|
91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
|
93 |
# Preprocessing the datasets.
|
94 |
# We need to read the aduio files as arrays
|
95 |
def speech_file_to_array_fn(batch):
|
96 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
97 |
+
batch["sentence"] = re.sub('[a-z]','',batch["sentence"])
|
98 |
+
batch["sentence"] = re.sub("[إأٱآا]", "ا", batch["sentence"])
|
99 |
+
noise = re.compile(""" ّ | # Tashdid
|
100 |
+
َ | # Fatha
|
101 |
+
ً | # Tanwin Fath
|
102 |
+
ُ | # Damma
|
103 |
+
ٌ | # Tanwin Damm
|
104 |
+
ِ | # Kasra
|
105 |
+
ٍ | # Tanwin Kasr
|
106 |
+
ْ | # Sukun
|
107 |
+
ـ # Tatwil/Kashida
|
108 |
+
""", re.VERBOSE)
|
109 |
+
batch["sentence"] = re.sub(noise, '', batch["sentence"])
|
110 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
111 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
112 |
+
return batch
|
113 |
|
114 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
115 |
|
116 |
# Preprocessing the datasets.
|
117 |
# We need to read the aduio files as arrays
|
118 |
def evaluate(batch):
|
119 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
120 |
|
121 |
+
with torch.no_grad():
|
122 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
123 |
|
124 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
125 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
126 |
+
return batch
|
127 |
|
128 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
129 |
|