anas commited on
Commit
6c6dd41
1 Parent(s): 53e3dce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -16
README.md CHANGED
@@ -1,7 +1,6 @@
1
  ---
2
  language: ar
3
  datasets:
4
- - common_voice
5
  - common_voice: Common Voice Corpus 4
6
  metrics:
7
  - wer
@@ -52,15 +51,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
52
  # Preprocessing the datasets.
53
  # We need to read the aduio files as arrays
54
  def speech_file_to_array_fn(batch):
55
- \\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
56
- \\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
57
- \\\\\\\\\\\\\\\\treturn batch
58
 
59
  test_dataset = test_dataset.map(speech_file_to_array_fn)
60
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
 
62
  with torch.no_grad():
63
- \\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
 
65
  predicted_ids = torch.argmax(logits, dim=-1)
66
 
@@ -87,31 +86,44 @@ processor = Wav2Vec2Processor.from_pretrained("anas/wav2vec2-large-xlsr-arabic")
87
  model = Wav2Vec2ForCTC.from_pretrained("anas/wav2vec2-large-xlsr-arabic/")
88
  model.to("cuda")
89
 
90
- chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“]'
91
 
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
- \\\\\\\\\\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
- \\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
99
- \\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
100
- \\\\\\\\\\\\\\\\treturn batch
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
  test_dataset = test_dataset.map(speech_file_to_array_fn)
103
 
104
  # Preprocessing the datasets.
105
  # We need to read the aduio files as arrays
106
  def evaluate(batch):
107
- \\\\\\\\\\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
 
109
- \\\\\\\\\\\\\\\\twith torch.no_grad():
110
- \\\\\\\\\\\\\\\\t\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
 
112
- \\\\\\\\\\\\\\\\tpred_ids = torch.argmax(logits, dim=-1)
113
- \\\\\\\\\\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
114
- \\\\\\\\\\\\\\\\treturn batch
115
 
116
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
117
 
 
1
  ---
2
  language: ar
3
  datasets:
 
4
  - common_voice: Common Voice Corpus 4
5
  metrics:
6
  - wer
 
51
  # Preprocessing the datasets.
52
  # We need to read the aduio files as arrays
53
  def speech_file_to_array_fn(batch):
54
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
55
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
56
+ return batch
57
 
58
  test_dataset = test_dataset.map(speech_file_to_array_fn)
59
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
60
 
61
  with torch.no_grad():
62
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
 
64
  predicted_ids = torch.argmax(logits, dim=-1)
65
 
 
86
  model = Wav2Vec2ForCTC.from_pretrained("anas/wav2vec2-large-xlsr-arabic/")
87
  model.to("cuda")
88
 
89
+ chars_to_ignore_regex = '[\,\؟\.\!\-\;\\:\'\"\☭\«\»\؛\—\ـ\_\،\“\%\‘\”\�]'
90
 
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
94
  # We need to read the aduio files as arrays
95
  def speech_file_to_array_fn(batch):
96
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
+ batch["sentence"] = re.sub('[a-z]','',batch["sentence"])
98
+ batch["sentence"] = re.sub("[إأٱآا]", "ا", batch["sentence"])
99
+ noise = re.compile(""" ّ | # Tashdid
100
+ َ | # Fatha
101
+ ً | # Tanwin Fath
102
+ ُ | # Damma
103
+ ٌ | # Tanwin Damm
104
+ ِ | # Kasra
105
+ ٍ | # Tanwin Kasr
106
+ ْ | # Sukun
107
+ ـ # Tatwil/Kashida
108
+ """, re.VERBOSE)
109
+ batch["sentence"] = re.sub(noise, '', batch["sentence"])
110
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
111
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
112
+ return batch
113
 
114
  test_dataset = test_dataset.map(speech_file_to_array_fn)
115
 
116
  # Preprocessing the datasets.
117
  # We need to read the aduio files as arrays
118
  def evaluate(batch):
119
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
120
 
121
+ with torch.no_grad():
122
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
123
 
124
+ pred_ids = torch.argmax(logits, dim=-1)
125
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
126
+ return batch
127
 
128
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
129