anas commited on
Commit
9ffbc32
1 Parent(s): 0594d22

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -16
README.md CHANGED
@@ -52,15 +52,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
52
  # Preprocessing the datasets.
53
  # We need to read the aduio files as arrays
54
  def speech_file_to_array_fn(batch):
55
- \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
56
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
57
- \treturn batch
58
 
59
  test_dataset = test_dataset.map(speech_file_to_array_fn)
60
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
 
62
  with torch.no_grad():
63
- \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
 
65
  predicted_ids = torch.argmax(logits, dim=-1)
66
 
@@ -71,7 +71,7 @@ print("Reference:", test_dataset["sentence"][:2])
71
 
72
  ## Evaluation
73
 
74
- The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French
75
 
76
 
77
  ```python
@@ -87,30 +87,31 @@ processor = Wav2Vec2Processor.from_pretrained("anas/wav2vec2-large-xlsr-arabic")
87
  model = Wav2Vec2ForCTC.from_pretrained("anas/wav2vec2-large-xlsr-arabic/")
88
  model.to("cuda")
89
 
90
- chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' # TODO: adapt this list to include all special characters you removed from the data
 
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
94
  # We need to read the aduio files as arrays
95
  def speech_file_to_array_fn(batch):
96
- \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
- \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
98
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
99
- \treturn batch
100
 
101
  test_dataset = test_dataset.map(speech_file_to_array_fn)
102
 
103
  # Preprocessing the datasets.
104
  # We need to read the aduio files as arrays
105
  def evaluate(batch):
106
- \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
107
 
108
- \twith torch.no_grad():
109
- \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
110
 
111
- \tpred_ids = torch.argmax(logits, dim=-1)
112
- \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
113
- \treturn batch
114
 
115
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
116
 
 
52
  # Preprocessing the datasets.
53
  # We need to read the aduio files as arrays
54
  def speech_file_to_array_fn(batch):
55
+ \\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
56
+ \\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
57
+ \\treturn batch
58
 
59
  test_dataset = test_dataset.map(speech_file_to_array_fn)
60
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
 
62
  with torch.no_grad():
63
+ \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
 
65
  predicted_ids = torch.argmax(logits, dim=-1)
66
 
 
71
 
72
  ## Evaluation
73
 
74
+ The model can be evaluated as follows on the Arabic test data of Common Voice.
75
 
76
 
77
  ```python
 
87
  model = Wav2Vec2ForCTC.from_pretrained("anas/wav2vec2-large-xlsr-arabic/")
88
  model.to("cuda")
89
 
90
+ chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]'
91
+
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
+ \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
+ \\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
99
+ \\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
100
+ \\treturn batch
101
 
102
  test_dataset = test_dataset.map(speech_file_to_array_fn)
103
 
104
  # Preprocessing the datasets.
105
  # We need to read the aduio files as arrays
106
  def evaluate(batch):
107
+ \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
 
109
+ \\twith torch.no_grad():
110
+ \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
 
112
+ \\tpred_ids = torch.argmax(logits, dim=-1)
113
+ \\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
114
+ \\treturn batch
115
 
116
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
117