---
library_name: transformers
license: llama3.1
base_model: anastas5/llama3.1-8B-Instruct-rus-test-v2
tags:
- generated_from_trainer
model-index:
- name: home/ubuntu/llm_training/axolotl/llama3-8b-gpt-4o-ru/output_llama3_8b_gpt_4o_ru
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: anastas5/llama3.1-8B-Instruct-rus-test-v2
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: anastas5/dataset-rus-test-six
type: sharegpt
conversation: llama-3
dataset_prepared_path: /home/ubuntu/llm_training/axolotl/llama3-8b-gpt-4o-ru/prepared_tagengo_rus
val_set_size: 0.05
output_dir: /home/ubuntu/llm_training/axolotl/llama3-8b-gpt-4o-ru/output_llama3_8b_gpt_4o_ru
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
use_wandb: false
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
```
# home/ubuntu/llm_training/axolotl/llama3-8b-gpt-4o-ru/output_llama3_8b_gpt_4o_ru
This model is a fine-tuned version of [anastas5/llama3.1-8B-Instruct-rus-test-v2](https://huggingface.co/anastas5/llama3.1-8B-Instruct-rus-test-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7729
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.957 | 0.0769 | 1 | 0.8838 |
| 0.9398 | 0.2308 | 3 | 0.8762 |
| 1.0969 | 0.4615 | 6 | 0.8373 |
| 0.9608 | 0.6923 | 9 | 0.8226 |
| 0.8364 | 0.9231 | 12 | 0.8146 |
| 0.7566 | 1.1154 | 15 | 0.7914 |
| 0.7927 | 1.3462 | 18 | 0.7818 |
| 0.74 | 1.5769 | 21 | 0.7784 |
| 0.7247 | 1.8077 | 24 | 0.7783 |
| 0.7261 | 2.0385 | 27 | 0.7748 |
| 0.7255 | 2.2308 | 30 | 0.7727 |
| 0.6439 | 2.4615 | 33 | 0.7726 |
| 0.5354 | 2.6923 | 36 | 0.7725 |
| 0.638 | 2.9231 | 39 | 0.7734 |
| 0.6246 | 3.0769 | 42 | 0.7726 |
| 0.5374 | 3.3077 | 45 | 0.7726 |
| 0.5539 | 3.5385 | 48 | 0.7729 |
| 0.6056 | 3.7692 | 51 | 0.7729 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1