andli28 commited on
Commit
fa7e834
·
1 Parent(s): e6a684e

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1304.30 +/- 31.39
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4ed9fa64d631e69ddeb847c99a2b0c5ba2ed9a10f0a27abd4e62de2f2f30879
3
+ size 129231
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6546c83430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6546c834c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6546c83550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6546c835e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6546c83670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6546c83700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6546c83790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6546c83820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6546c838b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6546c83940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6546c839d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6546c83a60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f6546c82b80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1681918637299166528,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGf93D7P1E6/UjVZP6C237/q5yW/m3yFPhPhgz7OwhO/Xb+fv262ljtJUeQ/BB83vrA8Ob0A+B/AhCXYPlzMGz8RzHi/VLhOv43cQz4HqoI9pRXAvgbzHUDK4VE97GoJQKyucT9xhNe/c6q1PuftC8B0dco/sy8uvrH+ND9QnOg+OYLDP5+BeT9AUoo/27GMv0Lysz9HS5+9ynTXP+reU78juuA/hHYIvp2WGr9tf5Q8C4NsP47jjL/LIBg/xbwjv9dvEr7owOm/MS2aPzwzXL88lYe/HwsYP3OqtT7mLOo+lCayP64oSj/u53O7nZ4OwBEaNL8OeaW+uqPUvi/CLz9E+Z+/lvdWP7Ph5j/uRNe7T4fyvcK0pr1ctrG+XsEcPXzkbr/1cHM+Bf8YwETtKT9G0mM/LT2SP062cj/3OLs+rK5xP3GE178JYDTA5izqPpFR0j8L8EU/CM+SPLDfTj8xQPg/dEpEv+52rj+dDmq/A8WfPsiQUbwae54/4Hsrv7Mf4T+xk1i8s5Wsv9McGT+PB36/Fim/PrMAaz0NKXy/iIiGvyESjz6XASo8/8H9vzyVh78fCxg/CWA0wOYs6j6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABlwN42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMY4RvgAAAABDKP6/AAAAAHHxizwAAAAAXrr1PwAAAAAOOBI+AAAAAGpK+D8AAAAAUvyJPAAAAADGpOa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyFb3tAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPJCBz4AAAAAbFPxvwAAAAA7YoE9AAAAAMgp+D8AAAAAgoTSPAAAAADwZNk/AAAAAJaekLwAAAAAdwbzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMuw3DQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICfmKs9AAAAAFX23L8AAAAAH15kPQAAAAAe7PM/AAAAALU6/z0AAAAAIfzcPwAAAADX1Zk9AAAAABBX778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuq202AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEbXJvQAAAAB3JfG/AAAAAHzkQLwAAAAAMJ/2PwAAAACIEPk8AAAAAJr84D8AAAAAlbYOvQAAAAAuLgHAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI9ib7bcoH+MAWyUTegDjAF0lEdAq0S3NPgvUXV9lChoBkdAkMst7a7EpGgHTegDaAhHQKtFf2C/XXl1fZQoaAZHQJL31Tl1bJRoB03oA2gIR0CrRlemm+CcdX2UKGgGR0CSeL1CPZIyaAdN6ANoCEdAq0bZVfeDWnV9lChoBkdAkBBBLf1pTWgHTegDaAhHQKtQh9DQZ4x1fZQoaAZHQI/wyNhmXgNoB03oA2gIR0CrUWnssxwidX2UKGgGR0CRMBTy8SPEaAdN6ANoCEdAq1JN9KEnLXV9lChoBkdAkhA8z2vjfmgHTegDaAhHQKtSz8O09hZ1fZQoaAZHQJGgaFPBSDRoB03oA2gIR0CrXtJZwGW2dX2UKGgGR0CP1peSB9ThaAdN6ANoCEdAq2ANDneSCHV9lChoBkdAkM0BKxs2vWgHTegDaAhHQKthY8kD6nB1fZQoaAZHQIuN41+AmRhoB03oA2gIR0CrYi2pyZKGdX2UKGgGR0CT4PkTHsC1aAdN6ANoCEdAq2vL7oB7u3V9lChoBkdAkopd/J/5L2gHTegDaAhHQKtsnXZoPCl1fZQoaAZHQJRE2U7jkuJoB03oA2gIR0CrbXcdgfEGdX2UKGgGR0CR85+49X9zaAdN6ANoCEdAq232+XZ5A3V9lChoBkdAlG6yzw+dLGgHTegDaAhHQKt4KqI7/4t1fZQoaAZHQJAo9Db8FZBoB03oA2gIR0CreUrUkOZtdX2UKGgGR0CTJUnW8RL9aAdN6ANoCEdAq3qLTvy9VXV9lChoBkdAkl+49ovi+GgHTegDaAhHQKt7TRVp9JB1fZQoaAZHQJJdPU6PsAxoB03oA2gIR0CrhqMd1dPddX2UKGgGR0CRdITTfBN3aAdN6ANoCEdAq4doiaAnUnV9lChoBkdAkwEmbkOqemgHTegDaAhHQKuIPTwUg0V1fZQoaAZHQJJ1TlV94NZoB03oA2gIR0CriLymQ8wIdX2UKGgGR0CUiRExIre7aAdN6ANoCEdAq5KQpe/pMnV9lChoBkdAkrW/BzmwJWgHTegDaAhHQKuTW4axX4l1fZQoaAZHQJQbCajN6gNoB03oA2gIR0CrlENb1RLsdX2UKGgGR0CS91M3qAz6aAdN6ANoCEdAq5UOkDZDiXV9lChoBkdAk8DQ8B+4LGgHTegDaAhHQKuhx5DZ13d1fZQoaAZHQJBySygPEsJoB03oA2gIR0CrooqAJ9iMdX2UKGgGR0CUffTEit7saAdN6ANoCEdAq6NgsRQJonV9lChoBkdAkXBeDSPU8WgHTegDaAhHQKuj3s0HhS91fZQoaAZHQJBHuoybhFVoB03oA2gIR0CrrZYX40uUdX2UKGgGR0CTYkSWqtHQaAdN6ANoCEdAq65dsxfv4XV9lChoBkdAkxOZrLyMDWgHTegDaAhHQKuvMSxqwhZ1fZQoaAZHQJNHLUF0PpZoB03oA2gIR0Crr7BzNliCdX2UKGgGR0CSqGDr7fpEaAdN6ANoCEdAq7z99fCyhXV9lChoBkdAj0xiWNWEK2gHTegDaAhHQKu9x6Vt4zJ1fZQoaAZHQJFB1+lTFVFoB03oA2gIR0CrvqGyHEdedX2UKGgGR0CUAfCQcPvsaAdN6ANoCEdAq78g8KXv6XV9lChoBkdAkpsfmDDjzmgHTegDaAhHQKvI/7BwdbR1fZQoaAZHQJP7Gskpqh1oB03oA2gIR0CrycHnlnyvdX2UKGgGR0CQxebfP5YYaAdN6ANoCEdAq8qfkPtlZ3V9lChoBkdAkYQX889wFWgHTegDaAhHQKvLKkDZDiR1fZQoaAZHQJNRdT1kDp1oB03oA2gIR0Cr11mR3eN2dX2UKGgGR0CTzNJSBK+SaAdN6ANoCEdAq9iSeRPoFHV9lChoBkdAkj/bWmP5pWgHTegDaAhHQKvZ5XmNiph1fZQoaAZHQJM6NxdY4hloB03oA2gIR0Cr2n1X/5tWdX2UKGgGR0CRc1kxREWqaAdN6ANoCEdAq+QjufEn9nV9lChoBkdAk4DyUX531WgHTegDaAhHQKvk70VafSR1fZQoaAZHQJORlYPoV21oB03oA2gIR0Cr5cf20zCUdX2UKGgGR0CSX+35N47jaAdN6ANoCEdAq+ZDSgGr0nV9lChoBkdAkOHHY6GQCGgHTegDaAhHQKvwpTd+G491fZQoaAZHQJI/6qEOAiFoB03oA2gIR0Cr8cVD0DlpdX2UKGgGR0CRf7dkauOkaAdN6ANoCEdAq/MOU2UB4nV9lChoBkdAkFOZprULD2gHTegDaAhHQKvz1bItDlZ1fZQoaAZHQJI5zo1UEPloB03oA2gIR0Cr/ve5Fw1jdX2UKGgGR0CSz9g6ltTDaAdN6ANoCEdAq//AtWdVenV9lChoBkdAkxhPOD8Lr2gHTegDaAhHQKwAmS0Sh8J1fZQoaAZHQJFR/Q1JlJ9oB03oA2gIR0CsARWpqASWdX2UKGgGR0CQKXxGlQ/HaAdN6ANoCEdArArLMzMzM3V9lChoBkdAkozUjPfKp2gHTegDaAhHQKwLlEZR8+l1fZQoaAZHQJMGM4xUNrloB03oA2gIR0CsDIVsUIszdX2UKGgGR0CRrLwQ176YaAdN6ANoCEdArA1AKhL5AXV9lChoBkdAjyZtzS1E3WgHTegDaAhHQKwZ5IDoyKx1fZQoaAZHQI6lxpg1FYxoB03oA2gIR0CsGq+717IDdX2UKGgGR0CO3OQ9zOopaAdN6ANoCEdArBuCYgJTl3V9lChoBkdAkUJ7gTAWSGgHTegDaAhHQKwcAOnVG1B1fZQoaAZHQJOgpNFjNINoB03oA2gIR0CsJZ8m8dxRdX2UKGgGR0CRhEbMX7+DaAdN6ANoCEdArCZnnyNGVnV9lChoBkdAk4kXQ6ZH/mgHTegDaAhHQKwnPeLvTgF1fZQoaAZHQJTYOLfk3jxoB03oA2gIR0CsJ7nNHH3ldX2UKGgGR0CS9W/x2B8QaAdN6ANoCEdArDTFV5rxiHV9lChoBkdAkjGf7N0NjWgHTegDaAhHQKw1jMjeKsN1fZQoaAZHQJQax6ol2NhoB03oA2gIR0CsNmeJgsshdX2UKGgGR0CRyiTlkpZwaAdN6ANoCEdArDbkoYvWYnV9lChoBkdAlK7dg0CRwWgHTegDaAhHQKxAmSM98qp1fZQoaAZHQJRwal1r6+FoB03oA2gIR0CsQWejmCAddX2UKGgGR0CU7edbxEv1aAdN6ANoCEdArEI42S+xnnV9lChoBkdAkSGXHim2s2gHTegDaAhHQKxCsq2Bret1fZQoaAZHQJRT7szEaVFoB03oA2gIR0CsToqFZgXudX2UKGgGR0CTONL+glF+aAdN6ANoCEdArE+/c580DXV9lChoBkdAlCGyLZSNwWgHTegDaAhHQKxRC9VWCEp1fZQoaAZHQJPQiePJaJRoB03oA2gIR0CsUdQA2hqTdX2UKGgGR0CUg6qp97WvaAdN6ANoCEdArFt4YBNmDnV9lChoBkdAlVTB+jM3ZWgHTegDaAhHQKxcQACGN711fZQoaAZHQJEa2UPhAGBoB03oA2gIR0CsXRPPkaMrdX2UKGgGR0CTlkG5MDfWaAdN6ANoCEdArF2U10knkXV9lChoBkdAlMwY+bExZmgHTegDaAhHQKxn/DwYtQN1fZQoaAZHQJTA4F6iTMdoB03oA2gIR0CsaRhwMpgDdX2UKGgGR0CXU5FFUhmoaAdN6ANoCEdArGpdE1EVnHV9lChoBkdAlReg5myxA2gHTegDaAhHQKxrImsNlRR1fZQoaAZHQJVms4Qz1sdoB03oA2gIR0CsdmOoxYaHdX2UKGgGR0CWCjluFYdRaAdN6ANoCEdArHckFyJbdXV9lChoBkdAlb4NKNAC4mgHTegDaAhHQKx3+dVea8Z1fZQoaAZHQJdkubd8ArBoB03oA2gIR0CseHcm8dxRdX2UKGgGR0CXXOv2oNutaAdN6ANoCEdArIH7Ud7v5XV9lChoBkdAlHC7FjurqGgHTegDaAhHQKyC0ophF3J1fZQoaAZHQJXUtnTRYzVoB03oA2gIR0Csg7UIToMbdX2UKGgGR0CWBT9y925haAdN6ANoCEdArIRb0+TvA3VlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea4338a3e15885b479760d6e5fea24c02c489bbaa398387bb14e3815a1a90d02
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53666958b97ee81dea18b1391fbf5182590a868de08acb6a0951685b0dbbbd67
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6546c83430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6546c834c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6546c83550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6546c835e0>", "_build": "<function ActorCriticPolicy._build at 0x7f6546c83670>", "forward": "<function ActorCriticPolicy.forward at 0x7f6546c83700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6546c83790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6546c83820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6546c838b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6546c83940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6546c839d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6546c83a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6546c82b80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681918637299166528, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGf93D7P1E6/UjVZP6C237/q5yW/m3yFPhPhgz7OwhO/Xb+fv262ljtJUeQ/BB83vrA8Ob0A+B/AhCXYPlzMGz8RzHi/VLhOv43cQz4HqoI9pRXAvgbzHUDK4VE97GoJQKyucT9xhNe/c6q1PuftC8B0dco/sy8uvrH+ND9QnOg+OYLDP5+BeT9AUoo/27GMv0Lysz9HS5+9ynTXP+reU78juuA/hHYIvp2WGr9tf5Q8C4NsP47jjL/LIBg/xbwjv9dvEr7owOm/MS2aPzwzXL88lYe/HwsYP3OqtT7mLOo+lCayP64oSj/u53O7nZ4OwBEaNL8OeaW+uqPUvi/CLz9E+Z+/lvdWP7Ph5j/uRNe7T4fyvcK0pr1ctrG+XsEcPXzkbr/1cHM+Bf8YwETtKT9G0mM/LT2SP062cj/3OLs+rK5xP3GE178JYDTA5izqPpFR0j8L8EU/CM+SPLDfTj8xQPg/dEpEv+52rj+dDmq/A8WfPsiQUbwae54/4Hsrv7Mf4T+xk1i8s5Wsv9McGT+PB36/Fim/PrMAaz0NKXy/iIiGvyESjz6XASo8/8H9vzyVh78fCxg/CWA0wOYs6j6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABlwN42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMY4RvgAAAABDKP6/AAAAAHHxizwAAAAAXrr1PwAAAAAOOBI+AAAAAGpK+D8AAAAAUvyJPAAAAADGpOa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyFb3tAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPJCBz4AAAAAbFPxvwAAAAA7YoE9AAAAAMgp+D8AAAAAgoTSPAAAAADwZNk/AAAAAJaekLwAAAAAdwbzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMuw3DQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICfmKs9AAAAAFX23L8AAAAAH15kPQAAAAAe7PM/AAAAALU6/z0AAAAAIfzcPwAAAADX1Zk9AAAAABBX778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuq202AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEbXJvQAAAAB3JfG/AAAAAHzkQLwAAAAAMJ/2PwAAAACIEPk8AAAAAJr84D8AAAAAlbYOvQAAAAAuLgHAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI9ib7bcoH+MAWyUTegDjAF0lEdAq0S3NPgvUXV9lChoBkdAkMst7a7EpGgHTegDaAhHQKtFf2C/XXl1fZQoaAZHQJL31Tl1bJRoB03oA2gIR0CrRlemm+CcdX2UKGgGR0CSeL1CPZIyaAdN6ANoCEdAq0bZVfeDWnV9lChoBkdAkBBBLf1pTWgHTegDaAhHQKtQh9DQZ4x1fZQoaAZHQI/wyNhmXgNoB03oA2gIR0CrUWnssxwidX2UKGgGR0CRMBTy8SPEaAdN6ANoCEdAq1JN9KEnLXV9lChoBkdAkhA8z2vjfmgHTegDaAhHQKtSz8O09hZ1fZQoaAZHQJGgaFPBSDRoB03oA2gIR0CrXtJZwGW2dX2UKGgGR0CP1peSB9ThaAdN6ANoCEdAq2ANDneSCHV9lChoBkdAkM0BKxs2vWgHTegDaAhHQKthY8kD6nB1fZQoaAZHQIuN41+AmRhoB03oA2gIR0CrYi2pyZKGdX2UKGgGR0CT4PkTHsC1aAdN6ANoCEdAq2vL7oB7u3V9lChoBkdAkopd/J/5L2gHTegDaAhHQKtsnXZoPCl1fZQoaAZHQJRE2U7jkuJoB03oA2gIR0CrbXcdgfEGdX2UKGgGR0CR85+49X9zaAdN6ANoCEdAq232+XZ5A3V9lChoBkdAlG6yzw+dLGgHTegDaAhHQKt4KqI7/4t1fZQoaAZHQJAo9Db8FZBoB03oA2gIR0CreUrUkOZtdX2UKGgGR0CTJUnW8RL9aAdN6ANoCEdAq3qLTvy9VXV9lChoBkdAkl+49ovi+GgHTegDaAhHQKt7TRVp9JB1fZQoaAZHQJJdPU6PsAxoB03oA2gIR0CrhqMd1dPddX2UKGgGR0CRdITTfBN3aAdN6ANoCEdAq4doiaAnUnV9lChoBkdAkwEmbkOqemgHTegDaAhHQKuIPTwUg0V1fZQoaAZHQJJ1TlV94NZoB03oA2gIR0CriLymQ8wIdX2UKGgGR0CUiRExIre7aAdN6ANoCEdAq5KQpe/pMnV9lChoBkdAkrW/BzmwJWgHTegDaAhHQKuTW4axX4l1fZQoaAZHQJQbCajN6gNoB03oA2gIR0CrlENb1RLsdX2UKGgGR0CS91M3qAz6aAdN6ANoCEdAq5UOkDZDiXV9lChoBkdAk8DQ8B+4LGgHTegDaAhHQKuhx5DZ13d1fZQoaAZHQJBySygPEsJoB03oA2gIR0CrooqAJ9iMdX2UKGgGR0CUffTEit7saAdN6ANoCEdAq6NgsRQJonV9lChoBkdAkXBeDSPU8WgHTegDaAhHQKuj3s0HhS91fZQoaAZHQJBHuoybhFVoB03oA2gIR0CrrZYX40uUdX2UKGgGR0CTYkSWqtHQaAdN6ANoCEdAq65dsxfv4XV9lChoBkdAkxOZrLyMDWgHTegDaAhHQKuvMSxqwhZ1fZQoaAZHQJNHLUF0PpZoB03oA2gIR0Crr7BzNliCdX2UKGgGR0CSqGDr7fpEaAdN6ANoCEdAq7z99fCyhXV9lChoBkdAj0xiWNWEK2gHTegDaAhHQKu9x6Vt4zJ1fZQoaAZHQJFB1+lTFVFoB03oA2gIR0CrvqGyHEdedX2UKGgGR0CUAfCQcPvsaAdN6ANoCEdAq78g8KXv6XV9lChoBkdAkpsfmDDjzmgHTegDaAhHQKvI/7BwdbR1fZQoaAZHQJP7Gskpqh1oB03oA2gIR0CrycHnlnyvdX2UKGgGR0CQxebfP5YYaAdN6ANoCEdAq8qfkPtlZ3V9lChoBkdAkYQX889wFWgHTegDaAhHQKvLKkDZDiR1fZQoaAZHQJNRdT1kDp1oB03oA2gIR0Cr11mR3eN2dX2UKGgGR0CTzNJSBK+SaAdN6ANoCEdAq9iSeRPoFHV9lChoBkdAkj/bWmP5pWgHTegDaAhHQKvZ5XmNiph1fZQoaAZHQJM6NxdY4hloB03oA2gIR0Cr2n1X/5tWdX2UKGgGR0CRc1kxREWqaAdN6ANoCEdAq+QjufEn9nV9lChoBkdAk4DyUX531WgHTegDaAhHQKvk70VafSR1fZQoaAZHQJORlYPoV21oB03oA2gIR0Cr5cf20zCUdX2UKGgGR0CSX+35N47jaAdN6ANoCEdAq+ZDSgGr0nV9lChoBkdAkOHHY6GQCGgHTegDaAhHQKvwpTd+G491fZQoaAZHQJI/6qEOAiFoB03oA2gIR0Cr8cVD0DlpdX2UKGgGR0CRf7dkauOkaAdN6ANoCEdAq/MOU2UB4nV9lChoBkdAkFOZprULD2gHTegDaAhHQKvz1bItDlZ1fZQoaAZHQJI5zo1UEPloB03oA2gIR0Cr/ve5Fw1jdX2UKGgGR0CSz9g6ltTDaAdN6ANoCEdAq//AtWdVenV9lChoBkdAkxhPOD8Lr2gHTegDaAhHQKwAmS0Sh8J1fZQoaAZHQJFR/Q1JlJ9oB03oA2gIR0CsARWpqASWdX2UKGgGR0CQKXxGlQ/HaAdN6ANoCEdArArLMzMzM3V9lChoBkdAkozUjPfKp2gHTegDaAhHQKwLlEZR8+l1fZQoaAZHQJMGM4xUNrloB03oA2gIR0CsDIVsUIszdX2UKGgGR0CRrLwQ176YaAdN6ANoCEdArA1AKhL5AXV9lChoBkdAjyZtzS1E3WgHTegDaAhHQKwZ5IDoyKx1fZQoaAZHQI6lxpg1FYxoB03oA2gIR0CsGq+717IDdX2UKGgGR0CO3OQ9zOopaAdN6ANoCEdArBuCYgJTl3V9lChoBkdAkUJ7gTAWSGgHTegDaAhHQKwcAOnVG1B1fZQoaAZHQJOgpNFjNINoB03oA2gIR0CsJZ8m8dxRdX2UKGgGR0CRhEbMX7+DaAdN6ANoCEdArCZnnyNGVnV9lChoBkdAk4kXQ6ZH/mgHTegDaAhHQKwnPeLvTgF1fZQoaAZHQJTYOLfk3jxoB03oA2gIR0CsJ7nNHH3ldX2UKGgGR0CS9W/x2B8QaAdN6ANoCEdArDTFV5rxiHV9lChoBkdAkjGf7N0NjWgHTegDaAhHQKw1jMjeKsN1fZQoaAZHQJQax6ol2NhoB03oA2gIR0CsNmeJgsshdX2UKGgGR0CRyiTlkpZwaAdN6ANoCEdArDbkoYvWYnV9lChoBkdAlK7dg0CRwWgHTegDaAhHQKxAmSM98qp1fZQoaAZHQJRwal1r6+FoB03oA2gIR0CsQWejmCAddX2UKGgGR0CU7edbxEv1aAdN6ANoCEdArEI42S+xnnV9lChoBkdAkSGXHim2s2gHTegDaAhHQKxCsq2Bret1fZQoaAZHQJRT7szEaVFoB03oA2gIR0CsToqFZgXudX2UKGgGR0CTONL+glF+aAdN6ANoCEdArE+/c580DXV9lChoBkdAlCGyLZSNwWgHTegDaAhHQKxRC9VWCEp1fZQoaAZHQJPQiePJaJRoB03oA2gIR0CsUdQA2hqTdX2UKGgGR0CUg6qp97WvaAdN6ANoCEdArFt4YBNmDnV9lChoBkdAlVTB+jM3ZWgHTegDaAhHQKxcQACGN711fZQoaAZHQJEa2UPhAGBoB03oA2gIR0CsXRPPkaMrdX2UKGgGR0CTlkG5MDfWaAdN6ANoCEdArF2U10knkXV9lChoBkdAlMwY+bExZmgHTegDaAhHQKxn/DwYtQN1fZQoaAZHQJTA4F6iTMdoB03oA2gIR0CsaRhwMpgDdX2UKGgGR0CXU5FFUhmoaAdN6ANoCEdArGpdE1EVnHV9lChoBkdAlReg5myxA2gHTegDaAhHQKxrImsNlRR1fZQoaAZHQJVms4Qz1sdoB03oA2gIR0CsdmOoxYaHdX2UKGgGR0CWCjluFYdRaAdN6ANoCEdArHckFyJbdXV9lChoBkdAlb4NKNAC4mgHTegDaAhHQKx3+dVea8Z1fZQoaAZHQJdkubd8ArBoB03oA2gIR0CseHcm8dxRdX2UKGgGR0CXXOv2oNutaAdN6ANoCEdArIH7Ud7v5XV9lChoBkdAlHC7FjurqGgHTegDaAhHQKyC0ophF3J1fZQoaAZHQJXUtnTRYzVoB03oA2gIR0Csg7UIToMbdX2UKGgGR0CWBT9y925haAdN6ANoCEdArIRb0+TvA3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:028d4aad1c0728125aab9d6f0ba69fc520da60b16a2d8d2cddae614de859666b
3
+ size 1068994
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1304.2964234732906, "std_reward": 31.38882309291993, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T16:35:26.084851"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cef9bf7fcdb1320faeb1647cdd21933e5760eafa50da0b1a568132b8ccbe7ea
3
+ size 2170