Andrea Colombo
commited on
Commit
·
4793ab9
1
Parent(s):
bb99c5b
upload fine-tuned model
Browse files- README.md +10 -178
- adapter_config.json +29 -0
- adapter_model.safetensors +3 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer_config.json +42 -0
- trainer_state.json +143 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -9,198 +9,30 @@ tags:
|
|
9 |
base_model: mistralai/Mistral-7B-Instruct-v0.1
|
10 |
---
|
11 |
|
12 |
-
# Model
|
13 |
|
14 |
-
|
15 |
|
16 |
-
## Model Details
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
<!-- Provide a longer summary of what this model is. -->
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
- **Developed by:** [More Information Needed]
|
25 |
-
- **Funded by [optional]:** [More Information Needed]
|
26 |
-
- **Shared by [optional]:** [More Information Needed]
|
27 |
-
- **Model type:** [More Information Needed]
|
28 |
-
- **Language(s) (NLP):** [More Information Needed]
|
29 |
-
- **License:** [More Information Needed]
|
30 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
31 |
-
|
32 |
-
### Model Sources [optional]
|
33 |
-
|
34 |
-
<!-- Provide the basic links for the model. -->
|
35 |
-
|
36 |
-
- **Repository:** [More Information Needed]
|
37 |
-
- **Paper [optional]:** [More Information Needed]
|
38 |
-
- **Demo [optional]:** [More Information Needed]
|
39 |
-
|
40 |
-
## Uses
|
41 |
-
|
42 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
43 |
-
|
44 |
-
### Direct Use
|
45 |
-
|
46 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
47 |
-
|
48 |
-
[More Information Needed]
|
49 |
-
|
50 |
-
### Downstream Use [optional]
|
51 |
-
|
52 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
53 |
-
|
54 |
-
[More Information Needed]
|
55 |
-
|
56 |
-
### Out-of-Scope Use
|
57 |
-
|
58 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
59 |
-
|
60 |
-
[More Information Needed]
|
61 |
-
|
62 |
-
## Bias, Risks, and Limitations
|
63 |
-
|
64 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
65 |
-
|
66 |
-
[More Information Needed]
|
67 |
-
|
68 |
-
### Recommendations
|
69 |
-
|
70 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
71 |
-
|
72 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
73 |
|
74 |
## How to Get Started with the Model
|
75 |
|
76 |
-
Use the code below to get started with the model.
|
77 |
-
|
78 |
-
[More Information Needed]
|
79 |
|
80 |
## Training Details
|
81 |
|
82 |
-
### Training Data
|
83 |
-
|
84 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
85 |
-
|
86 |
-
[More Information Needed]
|
87 |
-
|
88 |
### Training Procedure
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
#### Preprocessing [optional]
|
93 |
-
|
94 |
-
[More Information Needed]
|
95 |
-
|
96 |
|
97 |
-
#### Training Hyperparameters
|
98 |
-
|
99 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
100 |
-
|
101 |
-
#### Speeds, Sizes, Times [optional]
|
102 |
-
|
103 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
104 |
-
|
105 |
-
[More Information Needed]
|
106 |
|
107 |
## Evaluation
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
### Testing Data, Factors & Metrics
|
112 |
-
|
113 |
-
#### Testing Data
|
114 |
-
|
115 |
-
<!-- This should link to a Dataset Card if possible. -->
|
116 |
-
|
117 |
-
[More Information Needed]
|
118 |
-
|
119 |
-
#### Factors
|
120 |
-
|
121 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
122 |
-
|
123 |
-
[More Information Needed]
|
124 |
-
|
125 |
-
#### Metrics
|
126 |
-
|
127 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
### Results
|
132 |
-
|
133 |
-
[More Information Needed]
|
134 |
-
|
135 |
-
#### Summary
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
## Model Examination [optional]
|
140 |
-
|
141 |
-
<!-- Relevant interpretability work for the model goes here -->
|
142 |
-
|
143 |
-
[More Information Needed]
|
144 |
-
|
145 |
-
## Environmental Impact
|
146 |
-
|
147 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
148 |
-
|
149 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
150 |
-
|
151 |
-
- **Hardware Type:** [More Information Needed]
|
152 |
-
- **Hours used:** [More Information Needed]
|
153 |
-
- **Cloud Provider:** [More Information Needed]
|
154 |
-
- **Compute Region:** [More Information Needed]
|
155 |
-
- **Carbon Emitted:** [More Information Needed]
|
156 |
-
|
157 |
-
## Technical Specifications [optional]
|
158 |
-
|
159 |
-
### Model Architecture and Objective
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
### Compute Infrastructure
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Hardware
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
#### Software
|
172 |
-
|
173 |
-
[More Information Needed]
|
174 |
-
|
175 |
-
## Citation [optional]
|
176 |
-
|
177 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
178 |
-
|
179 |
-
**BibTeX:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
**APA:**
|
184 |
-
|
185 |
-
[More Information Needed]
|
186 |
-
|
187 |
-
## Glossary [optional]
|
188 |
-
|
189 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## More Information [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Authors [optional]
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
## Model Card Contact
|
202 |
-
|
203 |
-
[More Information Needed]
|
204 |
-
### Framework versions
|
205 |
|
206 |
-
- PEFT 0.11.1
|
|
|
9 |
base_model: mistralai/Mistral-7B-Instruct-v0.1
|
10 |
---
|
11 |
|
12 |
+
# Model Description
|
13 |
|
14 |
+
A Mistral-7B-instruct-v0.1 model to extract a title from the text of Italian law articles. It is fine-tuned over a set of 100k text-title pairs that are available throughout the Italian legislation. It can be used to extract titles for articles or attachments that do not have a pre-defined title.
|
15 |
|
|
|
16 |
|
17 |
+
- **Developed by:** Andrea Colombo, Politecnico di Milano
|
18 |
+
- **Model type:** text generation
|
19 |
+
- **Language(s) (NLP):** Italian
|
20 |
+
- **License:** Apache 2.0
|
21 |
+
- **Finetuned from model:** mistralai/Mistral-7B-Instruct-v0.1
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
## How to Get Started with the Model
|
25 |
|
|
|
|
|
|
|
26 |
|
27 |
## Training Details
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
### Training Procedure
|
30 |
|
31 |
+
The model has been trained for 100 training steps with batch size 4, 4-bit quantization using bitsandbytes and a LoRA rank of 64.
|
32 |
+
We use the paged Adam optimizer, a learning rate of 0.004, and a cosine learning rate scheduler with a 0.03 warm-up fraction.
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
## Evaluation
|
36 |
|
37 |
+
The best model reported an evaluation loss of 1.241.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
|
adapter_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.1",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"v_proj",
|
24 |
+
"q_proj"
|
25 |
+
],
|
26 |
+
"task_type": "CAUSAL_LM",
|
27 |
+
"use_dora": false,
|
28 |
+
"use_rslora": false
|
29 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e293ab6a52bb26bb69612ccc6c47d2b1c68f04232cc0dad369b1fc4a9456de0
|
3 |
+
size 109069176
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:111e9cd1e94b04428204e1f0d3962c18104226f8b74c3852cf0d4fcad2ec7c12
|
3 |
+
size 218211962
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16efb5e84d31149576cd7f684c4f49c3efb70127b39a234041019d54c6ea9612
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81007ec48272bbdc4f9622c046f9c026bf8120ed11d1398fd97bb5168a6f3dda
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": true,
|
35 |
+
"model_max_length": 1000000000000000019884624838656,
|
36 |
+
"pad_token": "</s>",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"unk_token": "<unk>",
|
41 |
+
"use_default_system_prompt": false
|
42 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.008880994671403197,
|
5 |
+
"eval_steps": 20,
|
6 |
+
"global_step": 100,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0008880994671403197,
|
13 |
+
"grad_norm": 0.3568251430988312,
|
14 |
+
"learning_rate": 0.0002,
|
15 |
+
"loss": 1.6891,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0017761989342806395,
|
20 |
+
"grad_norm": 0.29317253828048706,
|
21 |
+
"learning_rate": 0.0002,
|
22 |
+
"loss": 1.5007,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0017761989342806395,
|
27 |
+
"eval_loss": 1.4433443546295166,
|
28 |
+
"eval_runtime": 2364.2696,
|
29 |
+
"eval_samples_per_second": 4.79,
|
30 |
+
"eval_steps_per_second": 0.599,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.0026642984014209592,
|
35 |
+
"grad_norm": 0.2844996154308319,
|
36 |
+
"learning_rate": 0.0002,
|
37 |
+
"loss": 1.4145,
|
38 |
+
"step": 30
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.003552397868561279,
|
42 |
+
"grad_norm": 0.26554158329963684,
|
43 |
+
"learning_rate": 0.0002,
|
44 |
+
"loss": 1.3632,
|
45 |
+
"step": 40
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.003552397868561279,
|
49 |
+
"eval_loss": 1.3292763233184814,
|
50 |
+
"eval_runtime": 2364.4165,
|
51 |
+
"eval_samples_per_second": 4.79,
|
52 |
+
"eval_steps_per_second": 0.599,
|
53 |
+
"step": 40
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 0.004440497335701598,
|
57 |
+
"grad_norm": 0.2824796140193939,
|
58 |
+
"learning_rate": 0.0002,
|
59 |
+
"loss": 1.3502,
|
60 |
+
"step": 50
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"epoch": 0.0053285968028419185,
|
64 |
+
"grad_norm": 0.2961088716983795,
|
65 |
+
"learning_rate": 0.0002,
|
66 |
+
"loss": 1.2801,
|
67 |
+
"step": 60
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"epoch": 0.0053285968028419185,
|
71 |
+
"eval_loss": 1.2857508659362793,
|
72 |
+
"eval_runtime": 2364.2023,
|
73 |
+
"eval_samples_per_second": 4.79,
|
74 |
+
"eval_steps_per_second": 0.599,
|
75 |
+
"step": 60
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.006216696269982238,
|
79 |
+
"grad_norm": 0.3122478723526001,
|
80 |
+
"learning_rate": 0.0002,
|
81 |
+
"loss": 1.2985,
|
82 |
+
"step": 70
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 0.007104795737122558,
|
86 |
+
"grad_norm": 0.2596866488456726,
|
87 |
+
"learning_rate": 0.0002,
|
88 |
+
"loss": 1.3061,
|
89 |
+
"step": 80
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.007104795737122558,
|
93 |
+
"eval_loss": 1.2607264518737793,
|
94 |
+
"eval_runtime": 2364.551,
|
95 |
+
"eval_samples_per_second": 4.789,
|
96 |
+
"eval_steps_per_second": 0.599,
|
97 |
+
"step": 80
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 0.007992895204262877,
|
101 |
+
"grad_norm": 0.28420358896255493,
|
102 |
+
"learning_rate": 0.0002,
|
103 |
+
"loss": 1.2627,
|
104 |
+
"step": 90
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.008880994671403197,
|
108 |
+
"grad_norm": 0.27427056431770325,
|
109 |
+
"learning_rate": 0.0002,
|
110 |
+
"loss": 1.2262,
|
111 |
+
"step": 100
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.008880994671403197,
|
115 |
+
"eval_loss": 1.2411292791366577,
|
116 |
+
"eval_runtime": 2364.3817,
|
117 |
+
"eval_samples_per_second": 4.79,
|
118 |
+
"eval_steps_per_second": 0.599,
|
119 |
+
"step": 100
|
120 |
+
}
|
121 |
+
],
|
122 |
+
"logging_steps": 10,
|
123 |
+
"max_steps": 100,
|
124 |
+
"num_input_tokens_seen": 0,
|
125 |
+
"num_train_epochs": 1,
|
126 |
+
"save_steps": 500,
|
127 |
+
"stateful_callbacks": {
|
128 |
+
"TrainerControl": {
|
129 |
+
"args": {
|
130 |
+
"should_epoch_stop": false,
|
131 |
+
"should_evaluate": false,
|
132 |
+
"should_log": false,
|
133 |
+
"should_save": true,
|
134 |
+
"should_training_stop": true
|
135 |
+
},
|
136 |
+
"attributes": {}
|
137 |
+
}
|
138 |
+
},
|
139 |
+
"total_flos": 3.50843194834944e+16,
|
140 |
+
"train_batch_size": 4,
|
141 |
+
"trial_name": null,
|
142 |
+
"trial_params": null
|
143 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a27525a3487d07abf90399803e3b6b9e91108ad784516779b81492131f72e08b
|
3 |
+
size 5368
|