File size: 2,502 Bytes
668f077 a0d34f1 668f077 158d05b 668f077 a0d34f1 7b99639 158d05b 7b99639 158d05b 7b99639 668f077 a0d34f1 668f077 7b99639 668f077 7b99639 668f077 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6343582887700535
- name: Precision
type: precision
value: 0.7715676584335054
- name: Recall
type: recall
value: 0.6343582887700535
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3036
- Accuracy: 0.6344
- Precision: 0.7716
- Recall: 0.6344
- Confusion Matrix: [[1498, 14], [1080, 400]]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Confusion Matrix |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:-------------------------:|
| 0.1263 | 1.0 | 374 | 1.1458 | 0.7309 | 0.8125 | 0.7309 | [[1493, 19], [786, 694]] |
| 0.0301 | 2.0 | 748 | 3.0924 | 0.6330 | 0.7754 | 0.6330 | [[1502, 10], [1088, 392]] |
| 0.0467 | 3.0 | 1122 | 3.3036 | 0.6344 | 0.7716 | 0.6344 | [[1498, 14], [1080, 400]] |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|