File size: 2,276 Bytes
668f077
 
 
 
 
a0d34f1
 
668f077
 
158d05b
 
668f077
 
a0d34f1
 
 
 
 
 
 
 
 
 
 
 
 
b5bca51
158d05b
 
b5bca51
158d05b
 
b5bca51
668f077
 
 
 
 
 
 
a0d34f1
668f077
b5bca51
 
 
 
 
668f077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5bca51
668f077
 
 
b5bca51
 
 
668f077
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9669117647058824
    - name: Precision
      type: precision
      value: 0.9669680640397452
    - name: Recall
      type: recall
      value: 0.9669117647058824
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0861
- Accuracy: 0.9669
- Precision: 0.9670
- Recall: 0.9669
- Confusion Matrix: [[1471, 41], [58, 1422]]

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Confusion Matrix         |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------------------------:|
| 0.1483        | 1.0   | 374  | 0.0861          | 0.9669   | 0.9670    | 0.9669 | [[1471, 41], [58, 1422]] |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0