File size: 2,752 Bytes
668f077 a0d34f1 668f077 a0d34f1 4b081eb 668f077 a0d34f1 668f077 4b081eb 668f077 bfa38c1 668f077 bfa38c1 4b081eb 668f077 ae69328 668f077 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9966577540106952
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0271
- Accuracy: 0.9967
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0898 | 1.0 | 327 | 0.0707 | 0.9757 |
| 0.0221 | 2.0 | 654 | 0.0278 | 0.9920 |
| 0.06 | 3.0 | 981 | 0.0345 | 0.9913 |
| 0.0094 | 4.0 | 1309 | 0.0300 | 0.9947 |
| 0.0004 | 5.0 | 1636 | 0.0398 | 0.9942 |
| 0.0035 | 6.0 | 1963 | 0.0136 | 0.9975 |
| 0.0246 | 7.0 | 2290 | 0.0339 | 0.9940 |
| 0.0012 | 8.0 | 2618 | 0.0316 | 0.9958 |
| 0.0 | 9.0 | 2945 | 0.0302 | 0.9964 |
| 0.0 | 10.0 | 3272 | 0.0201 | 0.9973 |
| 0.0003 | 11.0 | 3599 | 0.0222 | 0.9955 |
| 0.0 | 12.0 | 3927 | 0.0218 | 0.9962 |
| 0.0001 | 13.0 | 4254 | 0.0293 | 0.9962 |
| 0.0002 | 14.0 | 4581 | 0.0272 | 0.9962 |
| 0.0 | 14.99 | 4905 | 0.0271 | 0.9967 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|