--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9883021390374331 - name: Precision type: precision value: 0.9883071765108582 - name: Recall type: recall value: 0.9883021390374331 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0394 - Accuracy: 0.9883 - Precision: 0.9883 - Recall: 0.9883 - Confusion Matrix: [[1497, 15], [20, 1460]] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Confusion Matrix | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------------------------:| | 0.1107 | 1.0 | 374 | 0.0641 | 0.9786 | 0.9787 | 0.9786 | [[1488, 24], [40, 1440]] | | 0.1079 | 2.0 | 748 | 0.0560 | 0.9773 | 0.9776 | 0.9773 | [[1498, 14], [54, 1426]] | | 0.0624 | 3.0 | 1122 | 0.0394 | 0.9883 | 0.9883 | 0.9883 | [[1497, 15], [20, 1460]] | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0