--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9966577540106952 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0271 - Accuracy: 0.9967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0898 | 1.0 | 327 | 0.0707 | 0.9757 | | 0.0221 | 2.0 | 654 | 0.0278 | 0.9920 | | 0.06 | 3.0 | 981 | 0.0345 | 0.9913 | | 0.0094 | 4.0 | 1309 | 0.0300 | 0.9947 | | 0.0004 | 5.0 | 1636 | 0.0398 | 0.9942 | | 0.0035 | 6.0 | 1963 | 0.0136 | 0.9975 | | 0.0246 | 7.0 | 2290 | 0.0339 | 0.9940 | | 0.0012 | 8.0 | 2618 | 0.0316 | 0.9958 | | 0.0 | 9.0 | 2945 | 0.0302 | 0.9964 | | 0.0 | 10.0 | 3272 | 0.0201 | 0.9973 | | 0.0003 | 11.0 | 3599 | 0.0222 | 0.9955 | | 0.0 | 12.0 | 3927 | 0.0218 | 0.9962 | | 0.0001 | 13.0 | 4254 | 0.0293 | 0.9962 | | 0.0002 | 14.0 | 4581 | 0.0272 | 0.9962 | | 0.0 | 14.99 | 4905 | 0.0271 | 0.9967 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0