Update app.py
Browse files
app.py
CHANGED
@@ -1,128 +1,184 @@
|
|
1 |
-
import os
|
2 |
-
import pdfplumber
|
3 |
-
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
-
|
|
|
6 |
from io import BytesIO
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
- next_section (str): The section to stop extracting text at.
|
15 |
-
Returns:
|
16 |
-
- text (str): The extracted text from the specified section range.
|
17 |
-
"""
|
18 |
-
|
19 |
-
|
20 |
-
def get_section(path, wanted_section, next_section):
|
21 |
-
print(wanted_section)
|
22 |
-
|
23 |
-
# Open the PDF file
|
24 |
-
doc = pdfplumber.open(BytesIO(path))
|
25 |
-
start_page = []
|
26 |
-
end_page = []
|
27 |
-
|
28 |
-
# Find the all the pages for the specified sections
|
29 |
-
for page in range(len(doc.pages)):
|
30 |
-
if len(doc.pages[page].search(wanted_section, return_chars=False, case=False)) > 0:
|
31 |
-
start_page.append(page)
|
32 |
-
if len(doc.pages[page].search(next_section, return_chars=False, case=False)) > 0:
|
33 |
-
end_page.append(page)
|
34 |
-
|
35 |
-
# Extract the text between the start and end page of the wanted section
|
36 |
text = []
|
37 |
-
|
38 |
-
page
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
return
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
# Use a non-greedy match for content between start_string and end_string
|
47 |
-
pattern = re.escape(start_string) + '(.*?)' + re.escape(end_string)
|
48 |
-
match = re.search(pattern, big_string, re.DOTALL)
|
49 |
-
|
50 |
-
if match:
|
51 |
-
# Return the content without the start and end strings
|
52 |
-
return match.group(1)
|
53 |
-
else:
|
54 |
-
# Return None if the pattern is not found
|
55 |
-
return None
|
56 |
-
|
57 |
-
def format_section1(section1_text):
|
58 |
-
result_section1_dict = {}
|
59 |
-
|
60 |
-
result_section1_dict['TOPIC'] = extract_between(section1_text, "Sektor", "EZ-Programm")
|
61 |
-
result_section1_dict['PROGRAM'] = extract_between(section1_text, "Sektor", "EZ-Programm")
|
62 |
-
result_section1_dict['PROJECT DESCRIPTION'] = extract_between(section1_text, "EZ-Programmziel", "Datum der letzten BE")
|
63 |
-
result_section1_dict['PROJECT NAME'] = extract_between(section1_text, "Modul", "Modulziel")
|
64 |
-
result_section1_dict['OBJECTIVE'] = extract_between(section1_text, "Modulziel", "Berichtszeitraum")
|
65 |
-
result_section1_dict['PROGRESS'] = extract_between(section1_text, "Zielerreichung des Moduls", "Massnahme im Zeitplan")
|
66 |
-
result_section1_dict['STATUS'] = extract_between(section1_text, "Massnahme im Zeitplan", "Risikoeinschätzung")
|
67 |
-
result_section1_dict['RECOMMENDATIONS'] = extract_between(section1_text, "Vorschläge zur Modulanpas-", "Voraussichtliche")
|
68 |
-
|
69 |
-
return result_section1_dict
|
70 |
-
|
71 |
-
def answer_questions(text,language="de"):
|
72 |
-
# Initialize the zero-shot classification pipeline
|
73 |
-
model_name = "deepset/gelectra-large-germanquad"
|
74 |
-
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
75 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
76 |
-
|
77 |
-
# Initialize the QA pipeline
|
78 |
-
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
79 |
questions = [
|
80 |
"Welches ist das Titel des Moduls?",
|
81 |
"Welches ist das Sektor oder das Kernthema?",
|
82 |
"Welches ist das Land?",
|
83 |
-
"Zu welchem Program oder EZ-Programm
|
84 |
-
#"Welche Durchführungsorganisation aus den 4 Varianten 'giz', 'kfw', 'ptb' und 'bgr' implementiert das Projekt?"
|
85 |
-
# "In dem Dokument was steht bei Sektor?",
|
86 |
-
# "In dem Dokument was steht von 'EZ-Programm' bis 'EZ-Programmziel'?",
|
87 |
-
# "In dem Dokument was steht bei EZ-Programmziel?",
|
88 |
-
# "In dem Dokument in dem Abschnitt '1. Kurzbeschreibung' was steht bei Modul?",
|
89 |
-
# "In dem Dokument was steht bei Zielerreichung des Moduls?",
|
90 |
-
# "In dem Dokument in dem Abschnitt '1. Kurzbeschreibung' was steht bei Maßnahme im Zeitplan?",
|
91 |
-
# "In dem Dokument was steht bei Vorschläge zur Modulanpassung?",
|
92 |
-
# "In dem Dokument in dem Abschnitt 'Anlage 1: Wirkungsmatrix des Moduls' was steht unter Laufzeit als erstes Datum?",
|
93 |
-
# "In dem Dokument in dem Abschnitt 'Anlage 1: Wirkungsmatrix des Moduls' was steht unter Laufzeit als zweites Datum?"
|
94 |
]
|
95 |
-
|
96 |
-
# Iterate over each question and get answers
|
97 |
-
answers_dict = {}
|
98 |
-
|
99 |
-
for question in questions:
|
100 |
-
result = qa_pipeline(question=question, context=text)
|
101 |
-
# print(f"Question: {question}")
|
102 |
-
# print(f"Answer: {result['answer']}\n")
|
103 |
-
answers_dict[question] = result['answer']
|
104 |
-
return answers_dict
|
105 |
-
|
106 |
-
|
107 |
-
def process_pdf(path):
|
108 |
-
results_dict = {}
|
109 |
-
results_dict["1. Kurzbeschreibung"] = \
|
110 |
-
get_section(path, "1. Kurzbeschreibung", "2. Einordnung des Moduls")
|
111 |
-
answers = answer_questions(results_dict["1. Kurzbeschreibung"])
|
112 |
return answers
|
113 |
|
114 |
-
def
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
if __name__ == "__main__":
|
120 |
-
|
121 |
-
# Define the Gradio interface
|
122 |
-
# iface = gr.Interface(fn=process_pdf,
|
123 |
-
demo = gr.Interface(fn=process_pdf,
|
124 |
-
inputs=gr.File(type="binary", label="Upload PDF"),
|
125 |
-
outputs=gr.Textbox(label="Extracted Text"),
|
126 |
-
title="PDF Text Extractor",
|
127 |
-
description="Upload a PDF file to extract.")
|
128 |
-
demo.launch()
|
|
|
1 |
+
# import os
|
2 |
+
# import pdfplumber
|
3 |
+
# import re
|
4 |
+
# import gradio as gr
|
5 |
+
# from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
|
6 |
+
# from io import BytesIO
|
7 |
+
# import torch
|
8 |
+
|
9 |
+
# """
|
10 |
+
# Extract the text from a section of a PDF file between 'wanted_section' and 'next_section'.
|
11 |
+
# Parameters:
|
12 |
+
# - path (str): The file path to the PDF file.
|
13 |
+
# - wanted_section (str): The section to start extracting text from.
|
14 |
+
# - next_section (str): The section to stop extracting text at.
|
15 |
+
# Returns:
|
16 |
+
# - text (str): The extracted text from the specified section range.
|
17 |
+
# """
|
18 |
+
|
19 |
+
|
20 |
+
# def get_section(path, wanted_section, next_section):
|
21 |
+
# print(wanted_section)
|
22 |
+
|
23 |
+
# # Open the PDF file
|
24 |
+
# doc = pdfplumber.open(BytesIO(path))
|
25 |
+
# start_page = []
|
26 |
+
# end_page = []
|
27 |
+
|
28 |
+
# # Find the all the pages for the specified sections
|
29 |
+
# for page in range(len(doc.pages)):
|
30 |
+
# if len(doc.pages[page].search(wanted_section, return_chars=False, case=False)) > 0:
|
31 |
+
# start_page.append(page)
|
32 |
+
# if len(doc.pages[page].search(next_section, return_chars=False, case=False)) > 0:
|
33 |
+
# end_page.append(page)
|
34 |
+
|
35 |
+
# # Extract the text between the start and end page of the wanted section
|
36 |
+
# text = []
|
37 |
+
# for page_num in range(max(start_page), max(end_page)+1):
|
38 |
+
# page = doc.pages[page_num]
|
39 |
+
# text.append(page.extract_text())
|
40 |
+
# text = " ".join(text)
|
41 |
+
# final_text = text.replace("\n", " ")
|
42 |
+
# return final_text
|
43 |
+
|
44 |
+
|
45 |
+
# def extract_between(big_string, start_string, end_string):
|
46 |
+
# # Use a non-greedy match for content between start_string and end_string
|
47 |
+
# pattern = re.escape(start_string) + '(.*?)' + re.escape(end_string)
|
48 |
+
# match = re.search(pattern, big_string, re.DOTALL)
|
49 |
+
|
50 |
+
# if match:
|
51 |
+
# # Return the content without the start and end strings
|
52 |
+
# return match.group(1)
|
53 |
+
# else:
|
54 |
+
# # Return None if the pattern is not found
|
55 |
+
# return None
|
56 |
+
|
57 |
+
# def format_section1(section1_text):
|
58 |
+
# result_section1_dict = {}
|
59 |
+
|
60 |
+
# result_section1_dict['TOPIC'] = extract_between(section1_text, "Sektor", "EZ-Programm")
|
61 |
+
# result_section1_dict['PROGRAM'] = extract_between(section1_text, "Sektor", "EZ-Programm")
|
62 |
+
# result_section1_dict['PROJECT DESCRIPTION'] = extract_between(section1_text, "EZ-Programmziel", "Datum der letzten BE")
|
63 |
+
# result_section1_dict['PROJECT NAME'] = extract_between(section1_text, "Modul", "Modulziel")
|
64 |
+
# result_section1_dict['OBJECTIVE'] = extract_between(section1_text, "Modulziel", "Berichtszeitraum")
|
65 |
+
# result_section1_dict['PROGRESS'] = extract_between(section1_text, "Zielerreichung des Moduls", "Massnahme im Zeitplan")
|
66 |
+
# result_section1_dict['STATUS'] = extract_between(section1_text, "Massnahme im Zeitplan", "Risikoeinschätzung")
|
67 |
+
# result_section1_dict['RECOMMENDATIONS'] = extract_between(section1_text, "Vorschläge zur Modulanpas-", "Voraussichtliche")
|
68 |
+
|
69 |
+
# return result_section1_dict
|
70 |
+
|
71 |
+
# def answer_questions(text,language="de"):
|
72 |
+
# # Initialize the zero-shot classification pipeline
|
73 |
+
# model_name = "deepset/gelectra-large-germanquad"
|
74 |
+
# model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
75 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
76 |
+
|
77 |
+
# # Initialize the QA pipeline
|
78 |
+
# qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
79 |
+
# questions = [
|
80 |
+
# "Welches ist das Titel des Moduls?",
|
81 |
+
# "Welches ist das Sektor oder das Kernthema?",
|
82 |
+
# "Welches ist das Land?",
|
83 |
+
# "Zu welchem Program oder EZ-Programm gehort das Projekt?"
|
84 |
+
# #"Welche Durchführungsorganisation aus den 4 Varianten 'giz', 'kfw', 'ptb' und 'bgr' implementiert das Projekt?"
|
85 |
+
# # "In dem Dokument was steht bei Sektor?",
|
86 |
+
# # "In dem Dokument was steht von 'EZ-Programm' bis 'EZ-Programmziel'?",
|
87 |
+
# # "In dem Dokument was steht bei EZ-Programmziel?",
|
88 |
+
# # "In dem Dokument in dem Abschnitt '1. Kurzbeschreibung' was steht bei Modul?",
|
89 |
+
# # "In dem Dokument was steht bei Zielerreichung des Moduls?",
|
90 |
+
# # "In dem Dokument in dem Abschnitt '1. Kurzbeschreibung' was steht bei Maßnahme im Zeitplan?",
|
91 |
+
# # "In dem Dokument was steht bei Vorschläge zur Modulanpassung?",
|
92 |
+
# # "In dem Dokument in dem Abschnitt 'Anlage 1: Wirkungsmatrix des Moduls' was steht unter Laufzeit als erstes Datum?",
|
93 |
+
# # "In dem Dokument in dem Abschnitt 'Anlage 1: Wirkungsmatrix des Moduls' was steht unter Laufzeit als zweites Datum?"
|
94 |
+
# ]
|
95 |
+
|
96 |
+
# # Iterate over each question and get answers
|
97 |
+
# answers_dict = {}
|
98 |
+
|
99 |
+
# for question in questions:
|
100 |
+
# result = qa_pipeline(question=question, context=text)
|
101 |
+
# # print(f"Question: {question}")
|
102 |
+
# # print(f"Answer: {result['answer']}\n")
|
103 |
+
# answers_dict[question] = result['answer']
|
104 |
+
# return answers_dict
|
105 |
+
|
106 |
+
|
107 |
+
# def process_pdf(path):
|
108 |
+
# results_dict = {}
|
109 |
+
# results_dict["1. Kurzbeschreibung"] = \
|
110 |
+
# get_section(path, "1. Kurzbeschreibung", "2. Einordnung des Moduls")
|
111 |
+
# answers = answer_questions(results_dict["1. Kurzbeschreibung"])
|
112 |
+
# return answers
|
113 |
+
|
114 |
+
# def get_first_page_text(file_data):
|
115 |
+
# doc = pdfplumber.open(BytesIO(file_data))
|
116 |
+
# if len(doc.pages):
|
117 |
+
# return doc.pages[0].extract_text()
|
118 |
+
|
119 |
+
# if __name__ == "__main__":
|
120 |
+
|
121 |
+
# # Define the Gradio interface
|
122 |
+
# # iface = gr.Interface(fn=process_pdf,
|
123 |
+
# # demo = gr.Interface(fn=process_pdf,
|
124 |
+
# # inputs=gr.File(type="binary", label="Upload PDF"),
|
125 |
+
# # outputs=gr.Textbox(label="Extracted Text"),
|
126 |
+
# # title="PDF Text Extractor",
|
127 |
+
# # description="Upload a PDF file to extract.")
|
128 |
+
# # demo.launch()
|
129 |
+
# demo = gr.Interface(fn=process_pdf,
|
130 |
+
# inputs=gr.File(type="pdf"),
|
131 |
+
# outputs="text,
|
132 |
+
# title="PDF Text Extractor",
|
133 |
+
# description="Upload a PDF file to extract.")
|
134 |
+
# demo.launch()
|
135 |
+
|
136 |
import gradio as gr
|
137 |
+
import pdfplumber
|
138 |
+
from transformers import pipeline
|
139 |
from io import BytesIO
|
140 |
+
import re
|
141 |
+
|
142 |
+
# Initialize the question-answering pipeline with a specific pre-trained model
|
143 |
+
qa_pipeline = pipeline("question-answering", model="deepset/gelectra-large-germanquad")
|
144 |
+
|
145 |
+
def extract_text_from_pdf(file_obj):
|
146 |
+
"""Extracts text from a PDF file."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
text = []
|
148 |
+
with pdfplumber.open(file_obj) as pdf:
|
149 |
+
for page in pdf.pages:
|
150 |
+
page_text = page.extract_text()
|
151 |
+
if page_text: # Make sure there's text on the page
|
152 |
+
text.append(page_text)
|
153 |
+
return " ".join(text)
|
154 |
+
|
155 |
+
def answer_questions(context):
|
156 |
+
"""Generates answers to predefined questions based on the provided context."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
questions = [
|
158 |
"Welches ist das Titel des Moduls?",
|
159 |
"Welches ist das Sektor oder das Kernthema?",
|
160 |
"Welches ist das Land?",
|
161 |
+
"Zu welchem Program oder EZ-Programm gehört das Projekt?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
]
|
163 |
+
answers = {q: qa_pipeline(question=q, context=context)['answer'] for q in questions}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
return answers
|
165 |
|
166 |
+
def process_pdf(file):
|
167 |
+
"""Process a PDF file to extract text and then use the text to answer questions."""
|
168 |
+
# Read the PDF file from Gradio's file input, which is a temporary file path
|
169 |
+
with file as file_path:
|
170 |
+
text = extract_text_from_pdf(BytesIO(file_path.read()))
|
171 |
+
results = answer_questions(text)
|
172 |
+
return "\n".join(f"{q}: {a}" for q, a in results.items())
|
173 |
+
|
174 |
+
# Define the Gradio interface
|
175 |
+
iface = gr.Interface(
|
176 |
+
fn=process_pdf,
|
177 |
+
inputs=gr.inputs.File(type="pdf", label="Upload your PDF file"),
|
178 |
+
outputs=gr.outputs.Textbox(label="Extracted Information and Answers"),
|
179 |
+
title="PDF Text Extractor and Question Answerer",
|
180 |
+
description="Upload a PDF file to extract text and answer predefined questions based on the content."
|
181 |
+
)
|
182 |
|
183 |
if __name__ == "__main__":
|
184 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|