File size: 9,559 Bytes
ef21732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
[INFO|parser.py:344] 2024-07-16 19:25:29,726 >> Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: False, compute dtype: torch.float16

[INFO|tokenization_utils_base.py:2108] 2024-07-16 19:25:32,413 >> loading file qwen.tiktoken from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen-1_8B-Chat/snapshots/1d0f68de57b88cfde81f3c3e537f24464d889081/qwen.tiktoken

[INFO|tokenization_utils_base.py:2108] 2024-07-16 19:25:32,413 >> loading file added_tokens.json from cache at None

[INFO|tokenization_utils_base.py:2108] 2024-07-16 19:25:32,413 >> loading file special_tokens_map.json from cache at None

[INFO|tokenization_utils_base.py:2108] 2024-07-16 19:25:32,413 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen-1_8B-Chat/snapshots/1d0f68de57b88cfde81f3c3e537f24464d889081/tokenizer_config.json

[INFO|tokenization_utils_base.py:2108] 2024-07-16 19:25:32,414 >> loading file tokenizer.json from cache at None

[INFO|template.py:268] 2024-07-16 19:25:32,773 >> Add eos token: <|im_end|>

[INFO|template.py:372] 2024-07-16 19:25:32,773 >> Add pad token: <|im_end|>

[INFO|loader.py:52] 2024-07-16 19:25:32,774 >> Loading dataset glaive_toolcall_en_demo.json...

[INFO|configuration_utils.py:733] 2024-07-16 19:26:23,755 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen-1_8B-Chat/snapshots/1d0f68de57b88cfde81f3c3e537f24464d889081/config.json

[INFO|configuration_utils.py:733] 2024-07-16 19:26:24,494 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen-1_8B-Chat/snapshots/1d0f68de57b88cfde81f3c3e537f24464d889081/config.json

[INFO|configuration_utils.py:796] 2024-07-16 19:26:24,495 >> Model config QWenConfig {
  "_name_or_path": "Qwen/Qwen-1_8B-Chat",
  "architectures": [
    "QWenLMHeadModel"
  ],
  "attn_dropout_prob": 0.0,
  "auto_map": {
    "AutoConfig": "Qwen/Qwen-1_8B-Chat--configuration_qwen.QWenConfig",
    "AutoModelForCausalLM": "Qwen/Qwen-1_8B-Chat--modeling_qwen.QWenLMHeadModel"
  },
  "bf16": false,
  "emb_dropout_prob": 0.0,
  "fp16": false,
  "fp32": false,
  "hidden_size": 2048,
  "initializer_range": 0.02,
  "intermediate_size": 11008,
  "kv_channels": 128,
  "layer_norm_epsilon": 1e-06,
  "max_position_embeddings": 8192,
  "model_type": "qwen",
  "no_bias": true,
  "num_attention_heads": 16,
  "num_hidden_layers": 24,
  "onnx_safe": null,
  "rotary_emb_base": 10000,
  "rotary_pct": 1.0,
  "scale_attn_weights": true,
  "seq_length": 8192,
  "softmax_in_fp32": false,
  "tie_word_embeddings": false,
  "tokenizer_class": "QWenTokenizer",
  "transformers_version": "4.41.2",
  "use_cache": true,
  "use_cache_kernel": false,
  "use_cache_quantization": false,
  "use_dynamic_ntk": true,
  "use_flash_attn": "auto",
  "use_logn_attn": true,
  "vocab_size": 151936
}


[INFO|modeling_utils.py:3474] 2024-07-16 19:26:26,974 >> loading weights file model.safetensors from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen-1_8B-Chat/snapshots/1d0f68de57b88cfde81f3c3e537f24464d889081/model.safetensors.index.json

[INFO|modeling_utils.py:1519] 2024-07-16 19:26:45,032 >> Instantiating QWenLMHeadModel model under default dtype torch.float16.

[INFO|configuration_utils.py:962] 2024-07-16 19:26:45,034 >> Generate config GenerationConfig {}


[INFO|modeling_utils.py:4280] 2024-07-16 19:26:51,937 >> All model checkpoint weights were used when initializing QWenLMHeadModel.


[INFO|modeling_utils.py:4288] 2024-07-16 19:26:51,937 >> All the weights of QWenLMHeadModel were initialized from the model checkpoint at Qwen/Qwen-1_8B-Chat.
If your task is similar to the task the model of the checkpoint was trained on, you can already use QWenLMHeadModel for predictions without further training.

[INFO|configuration_utils.py:917] 2024-07-16 19:26:52,423 >> loading configuration file generation_config.json from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen-1_8B-Chat/snapshots/1d0f68de57b88cfde81f3c3e537f24464d889081/generation_config.json

[INFO|configuration_utils.py:962] 2024-07-16 19:26:52,424 >> Generate config GenerationConfig {
  "chat_format": "chatml",
  "do_sample": true,
  "eos_token_id": 151643,
  "max_new_tokens": 512,
  "max_window_size": 6144,
  "pad_token_id": 151643,
  "repetition_penalty": 1.1,
  "top_k": 0,
  "top_p": 0.8
}


[WARNING|checkpointing.py:70] 2024-07-16 19:26:52,440 >> You are using the old GC format, some features (e.g. BAdam) will be invalid.

[INFO|checkpointing.py:103] 2024-07-16 19:26:52,440 >> Gradient checkpointing enabled.

[INFO|attention.py:86] 2024-07-16 19:26:52,440 >> Using vanilla attention implementation.

[INFO|adapter.py:302] 2024-07-16 19:26:52,441 >> Upcasting trainable params to float32.

[INFO|adapter.py:158] 2024-07-16 19:26:52,441 >> Fine-tuning method: LoRA

[INFO|misc.py:51] 2024-07-16 19:26:52,442 >> Found linear modules: c_attn,c_proj,w1,w2

[INFO|loader.py:196] 2024-07-16 19:26:53,145 >> trainable params: 6,709,248 || all params: 1,843,537,920 || trainable%: 0.3639

[INFO|trainer.py:641] 2024-07-16 19:26:53,161 >> Using auto half precision backend

[INFO|trainer.py:2078] 2024-07-16 19:26:54,481 >> ***** Running training *****

[INFO|trainer.py:2079] 2024-07-16 19:26:54,481 >>   Num examples = 300

[INFO|trainer.py:2080] 2024-07-16 19:26:54,481 >>   Num Epochs = 3

[INFO|trainer.py:2081] 2024-07-16 19:26:54,481 >>   Instantaneous batch size per device = 2

[INFO|trainer.py:2084] 2024-07-16 19:26:54,481 >>   Total train batch size (w. parallel, distributed & accumulation) = 16

[INFO|trainer.py:2085] 2024-07-16 19:26:54,481 >>   Gradient Accumulation steps = 8

[INFO|trainer.py:2086] 2024-07-16 19:26:54,482 >>   Total optimization steps = 54

[INFO|trainer.py:2087] 2024-07-16 19:26:54,484 >>   Number of trainable parameters = 6,709,248

[INFO|callbacks.py:310] 2024-07-16 19:27:37,133 >> {'loss': 0.6756, 'learning_rate': 4.8950e-05, 'epoch': 0.27, 'throughput': 1193.09}

[INFO|callbacks.py:310] 2024-07-16 19:28:17,112 >> {'loss': 0.6799, 'learning_rate': 4.5887e-05, 'epoch': 0.53, 'throughput': 1200.41}

[INFO|callbacks.py:310] 2024-07-16 19:28:56,484 >> {'loss': 0.6995, 'learning_rate': 4.1070e-05, 'epoch': 0.80, 'throughput': 1208.30}

[INFO|callbacks.py:310] 2024-07-16 19:29:36,117 >> {'loss': 0.6313, 'learning_rate': 3.4902e-05, 'epoch': 1.07, 'throughput': 1209.98}

[INFO|callbacks.py:310] 2024-07-16 19:30:17,804 >> {'loss': 0.5683, 'learning_rate': 2.7902e-05, 'epoch': 1.33, 'throughput': 1211.98}

[INFO|callbacks.py:310] 2024-07-16 19:30:57,971 >> {'loss': 0.4988, 'learning_rate': 2.0659e-05, 'epoch': 1.60, 'throughput': 1214.64}

[INFO|callbacks.py:310] 2024-07-16 19:31:38,903 >> {'loss': 0.5748, 'learning_rate': 1.3780e-05, 'epoch': 1.87, 'throughput': 1215.63}

[INFO|callbacks.py:310] 2024-07-16 19:32:15,869 >> {'loss': 0.5793, 'learning_rate': 7.8440e-06, 'epoch': 2.13, 'throughput': 1214.06}

[INFO|callbacks.py:310] 2024-07-16 19:32:55,941 >> {'loss': 0.5500, 'learning_rate': 3.3494e-06, 'epoch': 2.40, 'throughput': 1214.25}

[INFO|callbacks.py:310] 2024-07-16 19:33:38,528 >> {'loss': 0.5715, 'learning_rate': 6.7388e-07, 'epoch': 2.67, 'throughput': 1214.09}

[INFO|trainer.py:2329] 2024-07-16 19:34:11,515 >> 

Training completed. Do not forget to share your model on huggingface.co/models =)



[INFO|trainer.py:3410] 2024-07-16 19:34:11,517 >> Saving model checkpoint to saves/Qwen-1.8B-Chat/lora/train_2024-07-16-18-56-15

[INFO|configuration_utils.py:733] 2024-07-16 19:34:12,032 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen-1_8B-Chat/snapshots/1d0f68de57b88cfde81f3c3e537f24464d889081/config.json

[INFO|configuration_utils.py:796] 2024-07-16 19:34:12,033 >> Model config QWenConfig {
  "architectures": [
    "QWenLMHeadModel"
  ],
  "attn_dropout_prob": 0.0,
  "auto_map": {
    "AutoConfig": "Qwen/Qwen-1_8B-Chat--configuration_qwen.QWenConfig",
    "AutoModelForCausalLM": "Qwen/Qwen-1_8B-Chat--modeling_qwen.QWenLMHeadModel"
  },
  "bf16": false,
  "emb_dropout_prob": 0.0,
  "fp16": false,
  "fp32": false,
  "hidden_size": 2048,
  "initializer_range": 0.02,
  "intermediate_size": 11008,
  "kv_channels": 128,
  "layer_norm_epsilon": 1e-06,
  "max_position_embeddings": 8192,
  "model_type": "qwen",
  "no_bias": true,
  "num_attention_heads": 16,
  "num_hidden_layers": 24,
  "onnx_safe": null,
  "rotary_emb_base": 10000,
  "rotary_pct": 1.0,
  "scale_attn_weights": true,
  "seq_length": 8192,
  "softmax_in_fp32": false,
  "tie_word_embeddings": false,
  "tokenizer_class": "QWenTokenizer",
  "transformers_version": "4.41.2",
  "use_cache": true,
  "use_cache_kernel": false,
  "use_cache_quantization": false,
  "use_dynamic_ntk": true,
  "use_flash_attn": "auto",
  "use_logn_attn": true,
  "vocab_size": 151936
}


[INFO|tokenization_utils_base.py:2513] 2024-07-16 19:34:12,174 >> tokenizer config file saved in saves/Qwen-1.8B-Chat/lora/train_2024-07-16-18-56-15/tokenizer_config.json

[INFO|tokenization_utils_base.py:2522] 2024-07-16 19:34:12,174 >> Special tokens file saved in saves/Qwen-1.8B-Chat/lora/train_2024-07-16-18-56-15/special_tokens_map.json

[WARNING|ploting.py:89] 2024-07-16 19:34:12,511 >> No metric eval_loss to plot.

[WARNING|ploting.py:89] 2024-07-16 19:34:12,512 >> No metric eval_accuracy to plot.

[INFO|modelcard.py:450] 2024-07-16 19:34:12,513 >> Dropping the following result as it does not have all the necessary fields:
{'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}