andrespm commited on
Commit
b2276d9
1 Parent(s): 97174aa

Upload 8 files

Browse files
README.md ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Wav2Vec2-Large-XLSR-53
2
+
3
+ ---
4
+ language: gl
5
+ datasets:
6
+ - OpenSLR 77
7
+ metrics:
8
+ - wer
9
+ tags:
10
+ - audio
11
+ - automatic-speech-recognition
12
+ - speech
13
+ - xlsr-fine-tuning-week
14
+ license: apache-2.0
15
+ model-index:
16
+ - name: Galician Wav2Vec2-Large-XLSR-53
17
+ results:
18
+ - task:
19
+ name: Speech Recognition
20
+ type: automatic-speech-recognition
21
+ dataset:
22
+ name: OpenSLR
23
+ type: openslr
24
+ args: gl
25
+ metrics:
26
+ - name: Test WER
27
+ type: wer
28
+ value: 16.79
29
+ ---
30
+
31
+ Wav2Vec2-Large-XLSR-53-galician
32
+
33
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on galician using the [OpenSLR](https://huggingface.co/datasets/common_voice) dataset
34
+
35
+ When using this model, make sure that your speech input is sampled at 16kHz.
36
+
37
+ ## Usage
38
+
39
+ The model can be used directly (without a language model) as follows:
40
+
41
+ ```python
42
+ import torch
43
+ import torchaudio
44
+ from datasets import load_dataset
45
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
46
+
47
+ test_dataset = load_dataset("common_voice", "gl", split="test[:2%]") # This is not available yet, load OpenSLR or your dataset instead
48
+
49
+ processor = Wav2Vec2Processor.from_pretrained("diego-fustes/wav2vec2-large-xlsr-gl")
50
+ model = Wav2Vec2ForCTC.from_pretrained("diego-fustes/wav2vec2-large-xlsr-gl")
51
+
52
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
53
+
54
+ # Preprocessing the datasets.
55
+ # We need to read the aduio files as arrays
56
+ def speech_file_to_array_fn(batch):
57
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
58
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
59
+ return batch
60
+
61
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
62
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
63
+
64
+ with torch.no_grad():
65
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
66
+
67
+ predicted_ids = torch.argmax(logits, dim=-1)
68
+
69
+ print("Prediction:", processor.batch_decode(predicted_ids))
70
+ print("Reference:", test_dataset["sentence"][:2])
71
+ ```
72
+
73
+
74
+ ## Evaluation
75
+
76
+ The model can be evaluated as follows on the Galician test data of Common Voice (when it is released).
77
+
78
+ ```python
79
+ import torch
80
+ import torchaudio
81
+ from datasets import load_dataset, load_metric
82
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
83
+ import re
84
+
85
+ test_dataset = load_dataset("common_voice", "gl", split="test") # This is not available yet, load OpenSLR or your dataset instead
86
+ wer = load_metric("wer")
87
+
88
+ processor = Wav2Vec2Processor.from_pretrained("diego-fustes/wav2vec2-large-xlsr-gl")
89
+ model = Wav2Vec2ForCTC.from_pretrained("diego-fustes/wav2vec2-large-xlsr-gl")
90
+ model.to("cuda")
91
+
92
+ chars_to_ignore_regex = '[^a-záéíóúñ ]'
93
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
94
+
95
+ # Preprocessing the datasets.
96
+ # We need to read the aduio files as arrays
97
+ def speech_file_to_array_fn(batch):
98
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
99
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
100
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
101
+ return batch
102
+
103
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
104
+
105
+ # Preprocessing the datasets.
106
+ # We need to read the aduio files as arrays
107
+ def evaluate(batch):
108
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
109
+
110
+ with torch.no_grad():
111
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
112
+
113
+ pred_ids = torch.argmax(logits, dim=-1)
114
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
115
+ return batch
116
+
117
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
118
+
119
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
120
+ ```
121
+
122
+ **Test Result**: 16.79 % on OpenSLR split
123
+
124
+
125
+ ## Training
126
+
127
+ The OpenSLR [SLR77](https://openslr.org/77/) dataset was used for training and validation. The dataset was split as 70% for training, 15% for validation and 15% for testing
128
+
129
+ The script used for training can be found [here](https://github.com/diego-fustes/xlsr-fine-tuning-gl)
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
3
+ "activation_dropout": 0.0,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "Wav2Vec2ForCTC"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 1,
10
+ "conv_bias": true,
11
+ "conv_dim": [
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512
19
+ ],
20
+ "conv_kernel": [
21
+ 10,
22
+ 3,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 2,
27
+ 2
28
+ ],
29
+ "conv_stride": [
30
+ 5,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2
37
+ ],
38
+ "ctc_loss_reduction": "mean",
39
+ "ctc_zero_infinity": false,
40
+ "do_stable_layer_norm": true,
41
+ "eos_token_id": 2,
42
+ "feat_extract_activation": "gelu",
43
+ "feat_extract_dropout": 0.0,
44
+ "feat_extract_norm": "layer",
45
+ "feat_proj_dropout": 0.0,
46
+ "final_dropout": 0.0,
47
+ "gradient_checkpointing": true,
48
+ "hidden_act": "gelu",
49
+ "hidden_dropout": 0.1,
50
+ "hidden_size": 1024,
51
+ "initializer_range": 0.02,
52
+ "intermediate_size": 4096,
53
+ "layer_norm_eps": 1e-05,
54
+ "layerdrop": 0.1,
55
+ "mask_channel_length": 10,
56
+ "mask_channel_min_space": 1,
57
+ "mask_channel_other": 0.0,
58
+ "mask_channel_prob": 0.0,
59
+ "mask_channel_selection": "static",
60
+ "mask_feature_length": 10,
61
+ "mask_feature_prob": 0.0,
62
+ "mask_time_length": 10,
63
+ "mask_time_min_space": 1,
64
+ "mask_time_other": 0.0,
65
+ "mask_time_prob": 0.05,
66
+ "mask_time_selection": "static",
67
+ "model_type": "wav2vec2",
68
+ "num_attention_heads": 16,
69
+ "num_conv_pos_embedding_groups": 16,
70
+ "num_conv_pos_embeddings": 128,
71
+ "num_feat_extract_layers": 7,
72
+ "num_hidden_layers": 24,
73
+ "pad_token_id": 34,
74
+ "transformers_version": "4.4.0",
75
+ "vocab_size": 35
76
+ }
flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec57f94db39e61e6c7ebf0f4418534b5366e9b8ac9bb2c3f35a4d002bd0e44ec
3
+ size 65536
preprocessor_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_size": 1,
4
+ "padding_side": "right",
5
+ "padding_value": 0.0,
6
+ "return_attention_mask": true,
7
+ "sampling_rate": 16000
8
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70025d6fea750e66074d0d34c55a1ab880a80ed304d6ce7750d8bfb58840f69e
3
+ size 65536
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"g": 0, "m": 1, "n": 2, "y": 3, "x": 4, "s": 5, "e": 6, "á": 7, "ó": 9, "w": 10, "í": 11, "i": 12, "ñ": 13, "q": 14, "c": 15, "j": 16, "h": 17, "p": 18, "l": 19, "u": 20, "d": 21, "é": 22, "z": 23, "o": 24, "ú": 25, "r": 26, "b": 27, "f": 28, "k": 29, "v": 30, "t": 31, "a": 32, "|": 8, "[UNK]": 33, "[PAD]": 34}