andreyunic23 commited on
Commit
be8df59
·
verified ·
1 Parent(s): 53eb0d9

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,356 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:1084
8
+ - loss:ContrastiveTensionLossInBatchNegatives
9
+ base_model: sentence-transformers/all-mpnet-base-v2
10
+ widget:
11
+ - source_sentence: Heat and smoke detectors should trigger an alarm and extinguishing
12
+ systems.
13
+ sentences:
14
+ - Laboratory Operators must be trained to manipulate energetic materials correctly.
15
+ - Loss or damage to test environments.
16
+ - Heat and smoke detectors should trigger an alarm and extinguishing systems.
17
+ - source_sentence: Sensitive information regarding the aircrafts, vehicles, payloads
18
+ and ground support systems designs or procedures; personnel data; production process;
19
+ material; organic or operational safety information, among others, shall be kept
20
+ with the allocated restricted access.
21
+ sentences:
22
+ - Take off / landing executed only when runway is empty.
23
+ - Sensitive information regarding the aircrafts, vehicles, payloads and ground support
24
+ systems designs or procedures; personnel data; production process; material; organic
25
+ or operational safety information, among others, shall be kept with the allocated
26
+ restricted access.
27
+ - Pilots must not execute maneuver with incorrect climb rate, final altitude, etc.
28
+ - source_sentence: Doors close while person in the doorway.
29
+ sentences:
30
+ - ACS must not provide attitude maneuver commands too late after ASTRO-H has rotated
31
+ too far.
32
+ - A/C must maintain minimum safe altitude limits.
33
+ - Doors close while person in the doorway.
34
+ - source_sentence: Doors shall remain closed when train is moving.
35
+ sentences:
36
+ - Doors shall remain closed when train is moving.
37
+ - Catching fire inside the ship.
38
+ - Aircraft enters uncontrolled state.
39
+ - source_sentence: Customer's data released to public.
40
+ sentences:
41
+ - Exposure of Earth life or human assets off Earth to toxic, radioactive, or energetic
42
+ elements of mission hardware.
43
+ - Customer's data released to public.
44
+ - Equipment Operated Beyond Limits.
45
+ pipeline_tag: sentence-similarity
46
+ library_name: sentence-transformers
47
+ ---
48
+
49
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
50
+
51
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
52
+
53
+ ## Model Details
54
+
55
+ ### Model Description
56
+ - **Model Type:** Sentence Transformer
57
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
58
+ - **Maximum Sequence Length:** 384 tokens
59
+ - **Output Dimensionality:** 768 tokens
60
+ - **Similarity Function:** Cosine Similarity
61
+ <!-- - **Training Dataset:** Unknown -->
62
+ <!-- - **Language:** Unknown -->
63
+ <!-- - **License:** Unknown -->
64
+
65
+ ### Model Sources
66
+
67
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
68
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
69
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
70
+
71
+ ### Full Model Architecture
72
+
73
+ ```
74
+ SentenceTransformer(
75
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
76
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
77
+ (2): Normalize()
78
+ )
79
+ ```
80
+
81
+ ## Usage
82
+
83
+ ### Direct Usage (Sentence Transformers)
84
+
85
+ First install the Sentence Transformers library:
86
+
87
+ ```bash
88
+ pip install -U sentence-transformers
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+ ```python
93
+ from sentence_transformers import SentenceTransformer
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SentenceTransformer("andreyunic23/beds_step4")
97
+ # Run inference
98
+ sentences = [
99
+ "Customer's data released to public.",
100
+ "Customer's data released to public.",
101
+ 'Equipment Operated Beyond Limits.',
102
+ ]
103
+ embeddings = model.encode(sentences)
104
+ print(embeddings.shape)
105
+ # [3, 768]
106
+
107
+ # Get the similarity scores for the embeddings
108
+ similarities = model.similarity(embeddings, embeddings)
109
+ print(similarities.shape)
110
+ # [3, 3]
111
+ ```
112
+
113
+ <!--
114
+ ### Direct Usage (Transformers)
115
+
116
+ <details><summary>Click to see the direct usage in Transformers</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Downstream Usage (Sentence Transformers)
123
+
124
+ You can finetune this model on your own dataset.
125
+
126
+ <details><summary>Click to expand</summary>
127
+
128
+ </details>
129
+ -->
130
+
131
+ <!--
132
+ ### Out-of-Scope Use
133
+
134
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
135
+ -->
136
+
137
+ <!--
138
+ ## Bias, Risks and Limitations
139
+
140
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
141
+ -->
142
+
143
+ <!--
144
+ ### Recommendations
145
+
146
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
147
+ -->
148
+
149
+ ## Training Details
150
+
151
+ ### Training Dataset
152
+
153
+ #### Unnamed Dataset
154
+
155
+
156
+ * Size: 1,084 training samples
157
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
158
+ * Approximate statistics based on the first 1000 samples:
159
+ | | sentence1 | sentence2 | label |
160
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
161
+ | type | string | string | int |
162
+ | details | <ul><li>min: 4 tokens</li><li>mean: 13.7 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.7 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
163
+ * Samples:
164
+ | sentence1 | sentence2 | label |
165
+ |:--------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|:---------------|
166
+ | <code>A collision between the ACROBOTER robotic platform and an unknown object must be avoided at all times.</code> | <code>A collision between the ACROBOTER robotic platform and an unknown object must be avoided at all times.</code> | <code>0</code> |
167
+ | <code>A non‐patient is injured or killed by radiation.</code> | <code>A non‐patient is injured or killed by radiation.</code> | <code>0</code> |
168
+ | <code>A nonpatient is injured or killed in the process of MRI simulation.</code> | <code>A nonpatient is injured or killed in the process of MRI simulation.</code> | <code>0</code> |
169
+ * Loss: [<code>ContrastiveTensionLossInBatchNegatives</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastivetensionlossinbatchnegatives)
170
+
171
+ ### Training Hyperparameters
172
+ #### Non-Default Hyperparameters
173
+
174
+ - `per_device_train_batch_size`: 16
175
+ - `per_device_eval_batch_size`: 16
176
+ - `learning_rate`: 2e-05
177
+ - `num_train_epochs`: 12
178
+
179
+ #### All Hyperparameters
180
+ <details><summary>Click to expand</summary>
181
+
182
+ - `overwrite_output_dir`: False
183
+ - `do_predict`: False
184
+ - `eval_strategy`: no
185
+ - `prediction_loss_only`: True
186
+ - `per_device_train_batch_size`: 16
187
+ - `per_device_eval_batch_size`: 16
188
+ - `per_gpu_train_batch_size`: None
189
+ - `per_gpu_eval_batch_size`: None
190
+ - `gradient_accumulation_steps`: 1
191
+ - `eval_accumulation_steps`: None
192
+ - `torch_empty_cache_steps`: None
193
+ - `learning_rate`: 2e-05
194
+ - `weight_decay`: 0.0
195
+ - `adam_beta1`: 0.9
196
+ - `adam_beta2`: 0.999
197
+ - `adam_epsilon`: 1e-08
198
+ - `max_grad_norm`: 1.0
199
+ - `num_train_epochs`: 12
200
+ - `max_steps`: -1
201
+ - `lr_scheduler_type`: linear
202
+ - `lr_scheduler_kwargs`: {}
203
+ - `warmup_ratio`: 0.0
204
+ - `warmup_steps`: 0
205
+ - `log_level`: passive
206
+ - `log_level_replica`: warning
207
+ - `log_on_each_node`: True
208
+ - `logging_nan_inf_filter`: True
209
+ - `save_safetensors`: True
210
+ - `save_on_each_node`: False
211
+ - `save_only_model`: False
212
+ - `restore_callback_states_from_checkpoint`: False
213
+ - `no_cuda`: False
214
+ - `use_cpu`: False
215
+ - `use_mps_device`: False
216
+ - `seed`: 42
217
+ - `data_seed`: None
218
+ - `jit_mode_eval`: False
219
+ - `use_ipex`: False
220
+ - `bf16`: False
221
+ - `fp16`: False
222
+ - `fp16_opt_level`: O1
223
+ - `half_precision_backend`: auto
224
+ - `bf16_full_eval`: False
225
+ - `fp16_full_eval`: False
226
+ - `tf32`: None
227
+ - `local_rank`: 0
228
+ - `ddp_backend`: None
229
+ - `tpu_num_cores`: None
230
+ - `tpu_metrics_debug`: False
231
+ - `debug`: []
232
+ - `dataloader_drop_last`: False
233
+ - `dataloader_num_workers`: 0
234
+ - `dataloader_prefetch_factor`: None
235
+ - `past_index`: -1
236
+ - `disable_tqdm`: False
237
+ - `remove_unused_columns`: True
238
+ - `label_names`: None
239
+ - `load_best_model_at_end`: False
240
+ - `ignore_data_skip`: False
241
+ - `fsdp`: []
242
+ - `fsdp_min_num_params`: 0
243
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
244
+ - `fsdp_transformer_layer_cls_to_wrap`: None
245
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
246
+ - `deepspeed`: None
247
+ - `label_smoothing_factor`: 0.0
248
+ - `optim`: adamw_torch
249
+ - `optim_args`: None
250
+ - `adafactor`: False
251
+ - `group_by_length`: False
252
+ - `length_column_name`: length
253
+ - `ddp_find_unused_parameters`: None
254
+ - `ddp_bucket_cap_mb`: None
255
+ - `ddp_broadcast_buffers`: False
256
+ - `dataloader_pin_memory`: True
257
+ - `dataloader_persistent_workers`: False
258
+ - `skip_memory_metrics`: True
259
+ - `use_legacy_prediction_loop`: False
260
+ - `push_to_hub`: False
261
+ - `resume_from_checkpoint`: None
262
+ - `hub_model_id`: None
263
+ - `hub_strategy`: every_save
264
+ - `hub_private_repo`: False
265
+ - `hub_always_push`: False
266
+ - `gradient_checkpointing`: False
267
+ - `gradient_checkpointing_kwargs`: None
268
+ - `include_inputs_for_metrics`: False
269
+ - `eval_do_concat_batches`: True
270
+ - `fp16_backend`: auto
271
+ - `push_to_hub_model_id`: None
272
+ - `push_to_hub_organization`: None
273
+ - `mp_parameters`:
274
+ - `auto_find_batch_size`: False
275
+ - `full_determinism`: False
276
+ - `torchdynamo`: None
277
+ - `ray_scope`: last
278
+ - `ddp_timeout`: 1800
279
+ - `torch_compile`: False
280
+ - `torch_compile_backend`: None
281
+ - `torch_compile_mode`: None
282
+ - `dispatch_batches`: None
283
+ - `split_batches`: None
284
+ - `include_tokens_per_second`: False
285
+ - `include_num_input_tokens_seen`: False
286
+ - `neftune_noise_alpha`: None
287
+ - `optim_target_modules`: None
288
+ - `batch_eval_metrics`: False
289
+ - `eval_on_start`: False
290
+ - `use_liger_kernel`: False
291
+ - `eval_use_gather_object`: False
292
+ - `batch_sampler`: batch_sampler
293
+ - `multi_dataset_batch_sampler`: proportional
294
+
295
+ </details>
296
+
297
+ ### Training Logs
298
+ | Epoch | Step | Training Loss |
299
+ |:------:|:----:|:-------------:|
300
+ | 7.3529 | 500 | 0.0658 |
301
+
302
+
303
+ ### Framework Versions
304
+ - Python: 3.10.12
305
+ - Sentence Transformers: 3.1.1
306
+ - Transformers: 4.45.2
307
+ - PyTorch: 2.5.1+cu121
308
+ - Accelerate: 1.2.1
309
+ - Datasets: 3.2.0
310
+ - Tokenizers: 0.20.3
311
+
312
+ ## Citation
313
+
314
+ ### BibTeX
315
+
316
+ #### Sentence Transformers
317
+ ```bibtex
318
+ @inproceedings{reimers-2019-sentence-bert,
319
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
320
+ author = "Reimers, Nils and Gurevych, Iryna",
321
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
322
+ month = "11",
323
+ year = "2019",
324
+ publisher = "Association for Computational Linguistics",
325
+ url = "https://arxiv.org/abs/1908.10084",
326
+ }
327
+ ```
328
+
329
+ #### ContrastiveTensionLossInBatchNegatives
330
+ ```bibtex
331
+ @inproceedings{carlsson2021semantic,
332
+ title={Semantic Re-tuning with Contrastive Tension},
333
+ author={Fredrik Carlsson and Amaru Cuba Gyllensten and Evangelia Gogoulou and Erik Ylip{"a}{"a} Hellqvist and Magnus Sahlgren},
334
+ booktitle={International Conference on Learning Representations},
335
+ year={2021},
336
+ url={https://openreview.net/forum?id=Ov_sMNau-PF}
337
+ }
338
+ ```
339
+
340
+ <!--
341
+ ## Glossary
342
+
343
+ *Clearly define terms in order to be accessible across audiences.*
344
+ -->
345
+
346
+ <!--
347
+ ## Model Card Authors
348
+
349
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
350
+ -->
351
+
352
+ <!--
353
+ ## Model Card Contact
354
+
355
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
356
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f114f6140ce59e2ced55930f63d70f1859d57ba3d62bc9d6335dcd35381d6d04
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff