--- base_model: readerbench/RoBERT-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ro-sentiment-02 results: [] --- # ro-sentiment-02 This model is a fine-tuned version of [readerbench/RoBERT-base](https://huggingface.co/readerbench/RoBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4093 - Accuracy: 0.8312 - Precision: 0.8488 - Recall: 0.8866 - F1: 0.8673 - F1 Weighted: 0.8298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.3e-05 - train_batch_size: 96 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.25 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | 0.4289 | 1.0 | 1086 | 0.4168 | 0.8303 | 0.8868 | 0.8570 | 0.8717 | 0.8317 | | 0.3807 | 2.0 | 2172 | 0.3926 | 0.8424 | 0.8933 | 0.8680 | 0.8804 | 0.8434 | | 0.3306 | 3.0 | 3258 | 0.4093 | 0.8312 | 0.8488 | 0.8866 | 0.8673 | 0.8298 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3