Commit
·
935c8b1
1
Parent(s):
4346ddc
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.80 +/- 0.19
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34836c0e2e3ec4e1a63c4cd87f194179fb07ef87401a5f6358c0856f34c6accd
|
3 |
+
size 108083
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a9
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7379414670>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f7379409e80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 200000,
|
45 |
+
"_total_timesteps": 200000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1679169234574399740,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9ob21lL2FuZHlsby8ucHllbnYvdmVyc2lvbnMvMy45LjE1L2VudnMvZGVlcC1ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL2hvbWUvYW5keWxvLy5weWVudi92ZXJzaW9ucy8zLjkuMTUvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkhejPhWwODtvGAE/khejPhWwODtvGAE/khejPhWwODtvGAE/khejPhWwODtvGAE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqcg7P5dFcz6b/oE/HzsIvzFPTr+CFIy/w2a/P5+IDz3DnGu/bcECvwA4Cz9RJ5S/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACSF6M+FbA4O28YAT/RNaG8FfCZuttFzjuSF6M+FbA4O28YAT/RNaG8FfCZuttFzjuSF6M+FbA4O28YAT/RNaG8FfCZuttFzjuSF6M+FbA4O28YAT/RNaG8FfCZuttFzjuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.3185392 0.00281811 0.5042791 ]\n [0.3185392 0.00281811 0.5042791 ]\n [0.3185392 0.00281811 0.5042791 ]\n [0.3185392 0.00281811 0.5042791 ]]",
|
60 |
+
"desired_goal": "[[ 0.7335306 0.23757015 1.0155824 ]\n [-0.5321521 -0.80589586 -1.0943758 ]\n [ 1.4953235 0.0350424 -0.92036074]\n [-0.51076394 0.54382324 -1.1574498 ]]",
|
61 |
+
"observation": "[[ 0.3185392 0.00281811 0.5042791 -0.01967898 -0.00117445 0.00629495]\n [ 0.3185392 0.00281811 0.5042791 -0.01967898 -0.00117445 0.00629495]\n [ 0.3185392 0.00281811 0.5042791 -0.01967898 -0.00117445 0.00629495]\n [ 0.3185392 0.00281811 0.5042791 -0.01967898 -0.00117445 0.00629495]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASDfZvZ8vJ72IU9U92RmYPVdglb1h6ho+kE8KPv31DbxgFyM+eBkQPjfxDD0fpFs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.10606247 -0.0408169 0.10416323]\n [ 0.07426805 -0.07293766 0.15128471]\n [ 0.13506913 -0.00866461 0.15926886]\n [ 0.14072216 0.03440973 0.21449326]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3/5cNGQ89r+UhpRSlIwBbJRLMowBdJRHQHhHURSP2f11fZQoaAZoCWgPQwh476gxIebrv5SGlFKUaBVLMmgWR0B4RdPsRg7YdX2UKGgGaAloD0MIWoEhq1s98L+UhpRSlGgVSzJoFkdAeEO1g6U7jnV9lChoBmgJaA9DCE9ZTdcTnfG/lIaUUpRoFUsyaBZHQHhBYPbwjMV1fZQoaAZoCWgPQwhl/WZiuhDxv5SGlFKUaBVLMmgWR0B4TfAAQxvfdX2UKGgGaAloD0MILINqgxMR8r+UhpRSlGgVSzJoFkdAeExyAxzq8nV9lChoBmgJaA9DCPhu88ZJ4e2/lIaUUpRoFUsyaBZHQHhKUornTy91fZQoaAZoCWgPQwjptkQuOIPuv5SGlFKUaBVLMmgWR0B4R/16E8JVdX2UKGgGaAloD0MINh5ssdun8L+UhpRSlGgVSzJoFkdAeFS1uBMBZXV9lChoBmgJaA9DCNLCZRU2A/K/lIaUUpRoFUsyaBZHQHhTOWSlnAZ1fZQoaAZoCWgPQwjylUBK7Jr0v5SGlFKUaBVLMmgWR0B4URvQ4S6EdX2UKGgGaAloD0MIdm1vtyQH77+UhpRSlGgVSzJoFkdAeE7HtF8XvnV9lChoBmgJaA9DCFmmXyLe+vC/lIaUUpRoFUsyaBZHQHhbcnNPgvV1fZQoaAZoCWgPQwjQ0aqWdBTxv5SGlFKUaBVLMmgWR0B4WfYzzmOmdX2UKGgGaAloD0MIMGZLVkV487+UhpRSlGgVSzJoFkdAeFfXYlIEsHV9lChoBmgJaA9DCOkrSDMWDfW/lIaUUpRoFUsyaBZHQHhVguEmICV1fZQoaAZoCWgPQwhAvRk1XyXzv5SGlFKUaBVLMmgWR0B4YttaY/mldX2UKGgGaAloD0MIQQ5KmGn78b+UhpRSlGgVSzJoFkdAeGFeGO+7DnV9lChoBmgJaA9DCAPN59ztevG/lIaUUpRoFUsyaBZHQHhfRDG96C11fZQoaAZoCWgPQwgHz4QmiSXyv5SGlFKUaBVLMmgWR0B4XPGWD6FedX2UKGgGaAloD0MIol7waU5e8b+UhpRSlGgVSzJoFkdAeGmKKYRdyHV9lChoBmgJaA9DCOc0C7Q7JPG/lIaUUpRoFUsyaBZHQHhoDd1uBMB1fZQoaAZoCWgPQwgVNgNckC3qv5SGlFKUaBVLMmgWR0B4Ze79Q40edX2UKGgGaAloD0MIm1lLAWm/8L+UhpRSlGgVSzJoFkdAeGOZfD1oQHV9lChoBmgJaA9DCDPeVnptNu6/lIaUUpRoFUsyaBZHQHhwKaXrt3R1fZQoaAZoCWgPQwjt1FxuMNTwv5SGlFKUaBVLMmgWR0B4bqyHEdeZdX2UKGgGaAloD0MI5BWInpQJ8L+UhpRSlGgVSzJoFkdAeGyN5+pfhXV9lChoBmgJaA9DCFH6Qsh5P/S/lIaUUpRoFUsyaBZHQHhqOLzf7791fZQoaAZoCWgPQwjysbtASUHyv5SGlFKUaBVLMmgWR0B4dqnEVFhHdX2UKGgGaAloD0MImS1ZFeHm87+UhpRSlGgVSzJoFkdAeHUvrWy1NXV9lChoBmgJaA9DCMOayqKwy/K/lIaUUpRoFUsyaBZHQHhzEPYnOSp1fZQoaAZoCWgPQwiZgjXOpiPxv5SGlFKUaBVLMmgWR0B4cLrUsnRcdX2UKGgGaAloD0MINBE2PL3S7r+UhpRSlGgVSzJoFkdAeH0/Ot4iYHV9lChoBmgJaA9DCCRfCaTEru6/lIaUUpRoFUsyaBZHQHh7woXsPat1fZQoaAZoCWgPQwglzLT9Kyvtv5SGlFKUaBVLMmgWR0B4eaOsDGLldX2UKGgGaAloD0MIbf5fdeTI8b+UhpRSlGgVSzJoFkdAeHdPoV2zOXV9lChoBmgJaA9DCCxGXWvv0/C/lIaUUpRoFUsyaBZHQHiEQEU0vXd1fZQoaAZoCWgPQwg0TG2pg/zwv5SGlFKUaBVLMmgWR0B4gsPf8/D+dX2UKGgGaAloD0MIknnkDwYe77+UhpRSlGgVSzJoFkdAeICmQKa5PXV9lChoBmgJaA9DCAXAeAYNffO/lIaUUpRoFUsyaBZHQHh+T/p+tr91fZQoaAZoCWgPQwgycasgBvrxv5SGlFKUaBVLMmgWR0B4iqWRigCfdX2UKGgGaAloD0MISWjLuRSX8b+UhpRSlGgVSzJoFkdAeIknXd0q6XV9lChoBmgJaA9DCFTjpZvEoPK/lIaUUpRoFUsyaBZHQHiHB4yGi6B1fZQoaAZoCWgPQwhXQQx07Qvzv5SGlFKUaBVLMmgWR0B4hLDxb0OFdX2UKGgGaAloD0MItklFY+1v8b+UhpRSlGgVSzJoFkdAeJDeGO+7DnV9lChoBmgJaA9DCLAfYoOFU/W/lIaUUpRoFUsyaBZHQHiPYMBp5/t1fZQoaAZoCWgPQwgKuVLPghDxv5SGlFKUaBVLMmgWR0B4jUEPlMh6dX2UKGgGaAloD0MI4SnkSj2L7b+UhpRSlGgVSzJoFkdAeIrq0+kgwHV9lChoBmgJaA9DCLyuX7AbtvK/lIaUUpRoFUsyaBZHQHiXLDqGDcx1fZQoaAZoCWgPQwhvLCgMynTzv5SGlFKUaBVLMmgWR0B4la6jFhoedX2UKGgGaAloD0MILe3UXG7w8b+UhpRSlGgVSzJoFkdAeJOPikwevXV9lChoBmgJaA9DCLYUkPY/wOq/lIaUUpRoFUsyaBZHQHiROYD1XeZ1fZQoaAZoCWgPQwgjgnFw6Rjtv5SGlFKUaBVLMmgWR0B4nagi/wiJdX2UKGgGaAloD0MIoMVSJF+J8b+UhpRSlGgVSzJoFkdAeJwrhisnzHV9lChoBmgJaA9DCEyIuaRqe/K/lIaUUpRoFUsyaBZHQHiaDa4+bEx1fZQoaAZoCWgPQwjhQh7BjRTvv5SGlFKUaBVLMmgWR0B4l7gl4TsZdX2UKGgGaAloD0MI6L0xBABH77+UhpRSlGgVSzJoFkdAeKPVvuPV/nV9lChoBmgJaA9DCB3KUBVT6e2/lIaUUpRoFUsyaBZHQHiiV4s3AEd1fZQoaAZoCWgPQwhnDkktlEzsv5SGlFKUaBVLMmgWR0B4oDfj0cwQdX2UKGgGaAloD0MI91llprQ+87+UhpRSlGgVSzJoFkdAeJ3h86V+qnV9lChoBmgJaA9DCB8uOe6UzvG/lIaUUpRoFUsyaBZHQHiqNlZowmF1fZQoaAZoCWgPQwiimLwBZr7vv5SGlFKUaBVLMmgWR0B4qLgVGkN4dX2UKGgGaAloD0MIsdzSakjc8r+UhpRSlGgVSzJoFkdAeKaYxL0z03V9lChoBmgJaA9DCMmQY+sZQu6/lIaUUpRoFUsyaBZHQHikQmmce8x1fZQoaAZoCWgPQwg74LpiRvjov5SGlFKUaBVLMmgWR0B4sInXumaZdX2UKGgGaAloD0MISddMvtnm7r+UhpRSlGgVSzJoFkdAeK8Mg2ZRbnV9lChoBmgJaA9DCFzJjo1AvOy/lIaUUpRoFUsyaBZHQHis72xptaZ1fZQoaAZoCWgPQwhUceMW87Pwv5SGlFKUaBVLMmgWR0B4qplsguAadX2UKGgGaAloD0MIndZtUPut7b+UhpRSlGgVSzJoFkdAeLbm8/UvwnV9lChoBmgJaA9DCB2QhH07SfO/lIaUUpRoFUsyaBZHQHi1aKLsKLN1fZQoaAZoCWgPQwgP7zmwHCH0v5SGlFKUaBVLMmgWR0B4s0mnfl6rdX2UKGgGaAloD0MIJxO3CmKg7L+UhpRSlGgVSzJoFkdAeLD0MgEEDHV9lChoBmgJaA9DCF/v/niv2u2/lIaUUpRoFUsyaBZHQHi9WPo3aSN1fZQoaAZoCWgPQwhZNJ2dDI7uv5SGlFKUaBVLMmgWR0B4u9zQu27WdX2UKGgGaAloD0MIH/RsVn2u8r+UhpRSlGgVSzJoFkdAeLm9ovi97HV9lChoBmgJaA9DCPpCyHn/H+2/lIaUUpRoFUsyaBZHQHi3Z9AooeB1fZQoaAZoCWgPQwgRb51/uyz0v5SGlFKUaBVLMmgWR0B4w9oK2KEWdX2UKGgGaAloD0MIqKYk63B077+UhpRSlGgVSzJoFkdAeMJb0voNeHV9lChoBmgJaA9DCM/AyMuaWPC/lIaUUpRoFUsyaBZHQHjAPCdjG1h1fZQoaAZoCWgPQwhQptHkYozvv5SGlFKUaBVLMmgWR0B4vegTRIBjdX2UKGgGaAloD0MID/Ckhcvq9b+UhpRSlGgVSzJoFkdAeMqPj4pMH3V9lChoBmgJaA9DCJJYUu4+h/G/lIaUUpRoFUsyaBZHQHjJE0m+j/N1fZQoaAZoCWgPQwjj/bj98snxv5SGlFKUaBVLMmgWR0B4xvZoPCl8dX2UKGgGaAloD0MId700RYBT57+UhpRSlGgVSzJoFkdAeMSgTh5xBHV9lChoBmgJaA9DCO4E+69z0/O/lIaUUpRoFUsyaBZHQHjRO3Ytg8d1fZQoaAZoCWgPQwiFlQoqqn7pv5SGlFKUaBVLMmgWR0B4z71oQFs6dX2UKGgGaAloD0MIaf0tAfin8r+UhpRSlGgVSzJoFkdAeM2ftQbdanV9lChoBmgJaA9DCFOUS+MXHvC/lIaUUpRoFUsyaBZHQHjLS00FbFF1fZQoaAZoCWgPQwjbUDHO38Txv5SGlFKUaBVLMmgWR0B418LMLWqcdX2UKGgGaAloD0MIoU0On3Qi7b+UhpRSlGgVSzJoFkdAeNZFj/dZaHV9lChoBmgJaA9DCEhrDDohNPG/lIaUUpRoFUsyaBZHQHjUJk9U0el1fZQoaAZoCWgPQwhAahMn97vtv5SGlFKUaBVLMmgWR0B40dFfAsTWdX2UKGgGaAloD0MIsktUbw2s8b+UhpRSlGgVSzJoFkdAeN9VWjoIOnV9lChoBmgJaA9DCBnnb0IhAu+/lIaUUpRoFUsyaBZHQHjd16u4gA91fZQoaAZoCWgPQwihavRqgNLpv5SGlFKUaBVLMmgWR0B427o0Q9RrdX2UKGgGaAloD0MILNhGPNmN8r+UhpRSlGgVSzJoFkdAeNlnjABT43V9lChoBmgJaA9DCKD/Hrx2afG/lIaUUpRoFUsyaBZHQHjmR8x9G7V1fZQoaAZoCWgPQwi7nBIQk/Dxv5SGlFKUaBVLMmgWR0B45MuCf6GhdX2UKGgGaAloD0MI9dcrLLgf8L+UhpRSlGgVSzJoFkdAeOKwGnn+ynV9lChoBmgJaA9DCEfLgR5q2++/lIaUUpRoFUsyaBZHQHjgXG0eEIx1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 10000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4fb4798ce41f98e127a2dbf1766cd67a6a012678085f006ae164f7d85d5b86b
|
3 |
+
size 44670
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e91b101e4060f5acaec3577c9fba3bc614a7c4f8d00d21a56c74e60121bb779a
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.11-100.fc36.x86_64-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Feb 9 20:36:30 UTC 2023
|
2 |
+
- Python: 3.9.15
|
3 |
+
- Stable-Baselines3: 1.8.0a9
|
4 |
+
- PyTorch: 1.11.0+cu102
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7379414670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7379409e80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679169234574399740, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9ob21lL2FuZHlsby8ucHllbnYvdmVyc2lvbnMvMy45LjE1L2VudnMvZGVlcC1ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL2hvbWUvYW5keWxvLy5weWVudi92ZXJzaW9ucy8zLjkuMTUvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkhejPhWwODtvGAE/khejPhWwODtvGAE/khejPhWwODtvGAE/khejPhWwODtvGAE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqcg7P5dFcz6b/oE/HzsIvzFPTr+CFIy/w2a/P5+IDz3DnGu/bcECvwA4Cz9RJ5S/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACSF6M+FbA4O28YAT/RNaG8FfCZuttFzjuSF6M+FbA4O28YAT/RNaG8FfCZuttFzjuSF6M+FbA4O28YAT/RNaG8FfCZuttFzjuSF6M+FbA4O28YAT/RNaG8FfCZuttFzjuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3185392 0.00281811 0.5042791 ]\n [0.3185392 0.00281811 0.5042791 ]\n [0.3185392 0.00281811 0.5042791 ]\n [0.3185392 0.00281811 0.5042791 ]]", "desired_goal": "[[ 0.7335306 0.23757015 1.0155824 ]\n [-0.5321521 -0.80589586 -1.0943758 ]\n [ 1.4953235 0.0350424 -0.92036074]\n [-0.51076394 0.54382324 -1.1574498 ]]", "observation": "[[ 0.3185392 0.00281811 0.5042791 -0.01967898 -0.00117445 0.00629495]\n [ 0.3185392 0.00281811 0.5042791 -0.01967898 -0.00117445 0.00629495]\n [ 0.3185392 0.00281811 0.5042791 -0.01967898 -0.00117445 0.00629495]\n [ 0.3185392 0.00281811 0.5042791 -0.01967898 -0.00117445 0.00629495]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASDfZvZ8vJ72IU9U92RmYPVdglb1h6ho+kE8KPv31DbxgFyM+eBkQPjfxDD0fpFs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10606247 -0.0408169 0.10416323]\n [ 0.07426805 -0.07293766 0.15128471]\n [ 0.13506913 -0.00866461 0.15926886]\n [ 0.14072216 0.03440973 0.21449326]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3/5cNGQ89r+UhpRSlIwBbJRLMowBdJRHQHhHURSP2f11fZQoaAZoCWgPQwh476gxIebrv5SGlFKUaBVLMmgWR0B4RdPsRg7YdX2UKGgGaAloD0MIWoEhq1s98L+UhpRSlGgVSzJoFkdAeEO1g6U7jnV9lChoBmgJaA9DCE9ZTdcTnfG/lIaUUpRoFUsyaBZHQHhBYPbwjMV1fZQoaAZoCWgPQwhl/WZiuhDxv5SGlFKUaBVLMmgWR0B4TfAAQxvfdX2UKGgGaAloD0MILINqgxMR8r+UhpRSlGgVSzJoFkdAeExyAxzq8nV9lChoBmgJaA9DCPhu88ZJ4e2/lIaUUpRoFUsyaBZHQHhKUornTy91fZQoaAZoCWgPQwjptkQuOIPuv5SGlFKUaBVLMmgWR0B4R/16E8JVdX2UKGgGaAloD0MINh5ssdun8L+UhpRSlGgVSzJoFkdAeFS1uBMBZXV9lChoBmgJaA9DCNLCZRU2A/K/lIaUUpRoFUsyaBZHQHhTOWSlnAZ1fZQoaAZoCWgPQwjylUBK7Jr0v5SGlFKUaBVLMmgWR0B4URvQ4S6EdX2UKGgGaAloD0MIdm1vtyQH77+UhpRSlGgVSzJoFkdAeE7HtF8XvnV9lChoBmgJaA9DCFmmXyLe+vC/lIaUUpRoFUsyaBZHQHhbcnNPgvV1fZQoaAZoCWgPQwjQ0aqWdBTxv5SGlFKUaBVLMmgWR0B4WfYzzmOmdX2UKGgGaAloD0MIMGZLVkV487+UhpRSlGgVSzJoFkdAeFfXYlIEsHV9lChoBmgJaA9DCOkrSDMWDfW/lIaUUpRoFUsyaBZHQHhVguEmICV1fZQoaAZoCWgPQwhAvRk1XyXzv5SGlFKUaBVLMmgWR0B4YttaY/mldX2UKGgGaAloD0MIQQ5KmGn78b+UhpRSlGgVSzJoFkdAeGFeGO+7DnV9lChoBmgJaA9DCAPN59ztevG/lIaUUpRoFUsyaBZHQHhfRDG96C11fZQoaAZoCWgPQwgHz4QmiSXyv5SGlFKUaBVLMmgWR0B4XPGWD6FedX2UKGgGaAloD0MIol7waU5e8b+UhpRSlGgVSzJoFkdAeGmKKYRdyHV9lChoBmgJaA9DCOc0C7Q7JPG/lIaUUpRoFUsyaBZHQHhoDd1uBMB1fZQoaAZoCWgPQwgVNgNckC3qv5SGlFKUaBVLMmgWR0B4Ze79Q40edX2UKGgGaAloD0MIm1lLAWm/8L+UhpRSlGgVSzJoFkdAeGOZfD1oQHV9lChoBmgJaA9DCDPeVnptNu6/lIaUUpRoFUsyaBZHQHhwKaXrt3R1fZQoaAZoCWgPQwjt1FxuMNTwv5SGlFKUaBVLMmgWR0B4bqyHEdeZdX2UKGgGaAloD0MI5BWInpQJ8L+UhpRSlGgVSzJoFkdAeGyN5+pfhXV9lChoBmgJaA9DCFH6Qsh5P/S/lIaUUpRoFUsyaBZHQHhqOLzf7791fZQoaAZoCWgPQwjysbtASUHyv5SGlFKUaBVLMmgWR0B4dqnEVFhHdX2UKGgGaAloD0MImS1ZFeHm87+UhpRSlGgVSzJoFkdAeHUvrWy1NXV9lChoBmgJaA9DCMOayqKwy/K/lIaUUpRoFUsyaBZHQHhzEPYnOSp1fZQoaAZoCWgPQwiZgjXOpiPxv5SGlFKUaBVLMmgWR0B4cLrUsnRcdX2UKGgGaAloD0MINBE2PL3S7r+UhpRSlGgVSzJoFkdAeH0/Ot4iYHV9lChoBmgJaA9DCCRfCaTEru6/lIaUUpRoFUsyaBZHQHh7woXsPat1fZQoaAZoCWgPQwglzLT9Kyvtv5SGlFKUaBVLMmgWR0B4eaOsDGLldX2UKGgGaAloD0MIbf5fdeTI8b+UhpRSlGgVSzJoFkdAeHdPoV2zOXV9lChoBmgJaA9DCCxGXWvv0/C/lIaUUpRoFUsyaBZHQHiEQEU0vXd1fZQoaAZoCWgPQwg0TG2pg/zwv5SGlFKUaBVLMmgWR0B4gsPf8/D+dX2UKGgGaAloD0MIknnkDwYe77+UhpRSlGgVSzJoFkdAeICmQKa5PXV9lChoBmgJaA9DCAXAeAYNffO/lIaUUpRoFUsyaBZHQHh+T/p+tr91fZQoaAZoCWgPQwgycasgBvrxv5SGlFKUaBVLMmgWR0B4iqWRigCfdX2UKGgGaAloD0MISWjLuRSX8b+UhpRSlGgVSzJoFkdAeIknXd0q6XV9lChoBmgJaA9DCFTjpZvEoPK/lIaUUpRoFUsyaBZHQHiHB4yGi6B1fZQoaAZoCWgPQwhXQQx07Qvzv5SGlFKUaBVLMmgWR0B4hLDxb0OFdX2UKGgGaAloD0MItklFY+1v8b+UhpRSlGgVSzJoFkdAeJDeGO+7DnV9lChoBmgJaA9DCLAfYoOFU/W/lIaUUpRoFUsyaBZHQHiPYMBp5/t1fZQoaAZoCWgPQwgKuVLPghDxv5SGlFKUaBVLMmgWR0B4jUEPlMh6dX2UKGgGaAloD0MI4SnkSj2L7b+UhpRSlGgVSzJoFkdAeIrq0+kgwHV9lChoBmgJaA9DCLyuX7AbtvK/lIaUUpRoFUsyaBZHQHiXLDqGDcx1fZQoaAZoCWgPQwhvLCgMynTzv5SGlFKUaBVLMmgWR0B4la6jFhoedX2UKGgGaAloD0MILe3UXG7w8b+UhpRSlGgVSzJoFkdAeJOPikwevXV9lChoBmgJaA9DCLYUkPY/wOq/lIaUUpRoFUsyaBZHQHiROYD1XeZ1fZQoaAZoCWgPQwgjgnFw6Rjtv5SGlFKUaBVLMmgWR0B4nagi/wiJdX2UKGgGaAloD0MIoMVSJF+J8b+UhpRSlGgVSzJoFkdAeJwrhisnzHV9lChoBmgJaA9DCEyIuaRqe/K/lIaUUpRoFUsyaBZHQHiaDa4+bEx1fZQoaAZoCWgPQwjhQh7BjRTvv5SGlFKUaBVLMmgWR0B4l7gl4TsZdX2UKGgGaAloD0MI6L0xBABH77+UhpRSlGgVSzJoFkdAeKPVvuPV/nV9lChoBmgJaA9DCB3KUBVT6e2/lIaUUpRoFUsyaBZHQHiiV4s3AEd1fZQoaAZoCWgPQwhnDkktlEzsv5SGlFKUaBVLMmgWR0B4oDfj0cwQdX2UKGgGaAloD0MI91llprQ+87+UhpRSlGgVSzJoFkdAeJ3h86V+qnV9lChoBmgJaA9DCB8uOe6UzvG/lIaUUpRoFUsyaBZHQHiqNlZowmF1fZQoaAZoCWgPQwiimLwBZr7vv5SGlFKUaBVLMmgWR0B4qLgVGkN4dX2UKGgGaAloD0MIsdzSakjc8r+UhpRSlGgVSzJoFkdAeKaYxL0z03V9lChoBmgJaA9DCMmQY+sZQu6/lIaUUpRoFUsyaBZHQHikQmmce8x1fZQoaAZoCWgPQwg74LpiRvjov5SGlFKUaBVLMmgWR0B4sInXumaZdX2UKGgGaAloD0MISddMvtnm7r+UhpRSlGgVSzJoFkdAeK8Mg2ZRbnV9lChoBmgJaA9DCFzJjo1AvOy/lIaUUpRoFUsyaBZHQHis72xptaZ1fZQoaAZoCWgPQwhUceMW87Pwv5SGlFKUaBVLMmgWR0B4qplsguAadX2UKGgGaAloD0MIndZtUPut7b+UhpRSlGgVSzJoFkdAeLbm8/UvwnV9lChoBmgJaA9DCB2QhH07SfO/lIaUUpRoFUsyaBZHQHi1aKLsKLN1fZQoaAZoCWgPQwgP7zmwHCH0v5SGlFKUaBVLMmgWR0B4s0mnfl6rdX2UKGgGaAloD0MIJxO3CmKg7L+UhpRSlGgVSzJoFkdAeLD0MgEEDHV9lChoBmgJaA9DCF/v/niv2u2/lIaUUpRoFUsyaBZHQHi9WPo3aSN1fZQoaAZoCWgPQwhZNJ2dDI7uv5SGlFKUaBVLMmgWR0B4u9zQu27WdX2UKGgGaAloD0MIH/RsVn2u8r+UhpRSlGgVSzJoFkdAeLm9ovi97HV9lChoBmgJaA9DCPpCyHn/H+2/lIaUUpRoFUsyaBZHQHi3Z9AooeB1fZQoaAZoCWgPQwgRb51/uyz0v5SGlFKUaBVLMmgWR0B4w9oK2KEWdX2UKGgGaAloD0MIqKYk63B077+UhpRSlGgVSzJoFkdAeMJb0voNeHV9lChoBmgJaA9DCM/AyMuaWPC/lIaUUpRoFUsyaBZHQHjAPCdjG1h1fZQoaAZoCWgPQwhQptHkYozvv5SGlFKUaBVLMmgWR0B4vegTRIBjdX2UKGgGaAloD0MID/Ckhcvq9b+UhpRSlGgVSzJoFkdAeMqPj4pMH3V9lChoBmgJaA9DCJJYUu4+h/G/lIaUUpRoFUsyaBZHQHjJE0m+j/N1fZQoaAZoCWgPQwjj/bj98snxv5SGlFKUaBVLMmgWR0B4xvZoPCl8dX2UKGgGaAloD0MId700RYBT57+UhpRSlGgVSzJoFkdAeMSgTh5xBHV9lChoBmgJaA9DCO4E+69z0/O/lIaUUpRoFUsyaBZHQHjRO3Ytg8d1fZQoaAZoCWgPQwiFlQoqqn7pv5SGlFKUaBVLMmgWR0B4z71oQFs6dX2UKGgGaAloD0MIaf0tAfin8r+UhpRSlGgVSzJoFkdAeM2ftQbdanV9lChoBmgJaA9DCFOUS+MXHvC/lIaUUpRoFUsyaBZHQHjLS00FbFF1fZQoaAZoCWgPQwjbUDHO38Txv5SGlFKUaBVLMmgWR0B418LMLWqcdX2UKGgGaAloD0MIoU0On3Qi7b+UhpRSlGgVSzJoFkdAeNZFj/dZaHV9lChoBmgJaA9DCEhrDDohNPG/lIaUUpRoFUsyaBZHQHjUJk9U0el1fZQoaAZoCWgPQwhAahMn97vtv5SGlFKUaBVLMmgWR0B40dFfAsTWdX2UKGgGaAloD0MIsktUbw2s8b+UhpRSlGgVSzJoFkdAeN9VWjoIOnV9lChoBmgJaA9DCBnnb0IhAu+/lIaUUpRoFUsyaBZHQHjd16u4gA91fZQoaAZoCWgPQwihavRqgNLpv5SGlFKUaBVLMmgWR0B427o0Q9RrdX2UKGgGaAloD0MILNhGPNmN8r+UhpRSlGgVSzJoFkdAeNlnjABT43V9lChoBmgJaA9DCKD/Hrx2afG/lIaUUpRoFUsyaBZHQHjmR8x9G7V1fZQoaAZoCWgPQwi7nBIQk/Dxv5SGlFKUaBVLMmgWR0B45MuCf6GhdX2UKGgGaAloD0MI9dcrLLgf8L+UhpRSlGgVSzJoFkdAeOKwGnn+ynV9lChoBmgJaA9DCEfLgR5q2++/lIaUUpRoFUsyaBZHQHjgXG0eEIx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-6.1.11-100.fc36.x86_64-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Feb 9 20:36:30 UTC 2023", "Python": "3.9.15", "Stable-Baselines3": "1.8.0a9", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (441 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.7966973091941327, "std_reward": 0.19440647918450205, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-18T20:00:36.339492"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1d26e662e699c20537a139c025aabb4e33d1dc0206607316c3740de92e60d04
|
3 |
+
size 2381
|