First example
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-test.zip +2 -2
- ppo-LunarLander-test/data +17 -17
- ppo-LunarLander-test/policy.optimizer.pth +1 -1
- ppo-LunarLander-test/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 257.69 +/- 14.91
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6451fc59e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6451fc5a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6451fc5b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6451fc5b90>", "_build": "<function ActorCriticPolicy._build at 0x7f6451fc5c20>", "forward": "<function ActorCriticPolicy.forward at 0x7f6451fc5cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6451fc5d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6451fc5dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6451fc5e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6451fc5ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6451fc5f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f645200cc00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651759426.9101102, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEvaCr8eGDm+SonZulHMV7n0fjM+kZwQOgAAgD8AAIA/035ZPvH3Yzx7Dfg4OrIfNyls9D3+kRW4AACAPwAAgD/db/M+GKfxPhRrFL4KVTS+LrsvPadMiTwAAAAAAAAAAK1yVz7cJ2S8svGPuwtblDkp6Me9vIqsOgAAgD8AAIA/ZvBsPvhP7TwPHqm6MCZ3ubHugz7oN/M5AACAPwAAgD/aRwQ+0s48PwKMIz5wqHm+4/iiPeIwtTwAAAAAAAAAAA2O+70P6R4/sGilvSNB1b7nG0W9xv8JOwAAAAAAAAAA6hvEvjiOCD8KOHu+otOxvsABBr7iOIk8AAAAAAAAAADanMc9KUhfujiIUbgmRD6zjUMuuoNwdjcAAIA/AACAPzMlvD3hUJq62JZHOkRcmjJIRKE62oJmuQAAgD8AAAAADQrIPgULwTyIgCq8VsezulGOYD6z8tK7AACAPwAAgD8ai0e9rgGOutM/cTotLVW2sa6zOk/ii7kAAIA/AACAP61ciz7aCU+9IOj0Obdw2bgiObG+58oruQAAgD8AAIA/En6cvvv4KD+WEfK9mx53vk2sjr0Slwc9AAAAAAAAAAAaKKw9KVg6ug1v7DrG7d01bqKOuhwiCLoAAIA/AACAP+pNgT5OIaS8yv4TO4KGSblJPw++MyszugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeXjPgWUWYUCUhpRSlIwBbJRN6AOMAXSUR0CUTN7PY4ACdX2UKGgGaAloD0MI3UPC9378aUCUhpRSlGgVTUoCaBZHQJRQsBPsRg91fZQoaAZoCWgPQwgHDJI+raReQJSGlFKUaBVN6ANoFkdAlFXMkD6nBXV9lChoBmgJaA9DCHr+tFHdhHBAlIaUUpRoFU2aAWgWR0CUWXl2NedDdX2UKGgGaAloD0MI/tKiPkkHbUCUhpRSlGgVTZQBaBZHQJRZ1t8/lhh1fZQoaAZoCWgPQwhfJR+7i1ZhQJSGlFKUaBVN6ANoFkdAlFzAU1yeZ3V9lChoBmgJaA9DCFz/rs8co29AlIaUUpRoFU3EA2gWR0CUYKN+so2GdX2UKGgGaAloD0MI31FjQgwZcECUhpRSlGgVTS0CaBZHQJRhz889wFV1fZQoaAZoCWgPQwgZr3lVZ4xrQJSGlFKUaBVNrgFoFkdAlGZr/S6UaHV9lChoBmgJaA9DCPVKWYa4eWJAlIaUUpRoFU3oA2gWR0CUZuMDfWMCdX2UKGgGaAloD0MI2zS214LWb0CUhpRSlGgVTb0BaBZHQJRpV06o2n91fZQoaAZoCWgPQwiwql5+p+RuQJSGlFKUaBVNXAFoFkdAlGpsBZIQOHV9lChoBmgJaA9DCCDrqdVX6VdAlIaUUpRoFU3oA2gWR0CUbn8HObAldX2UKGgGaAloD0MItDnObcJAVECUhpRSlGgVTegDaBZHQJRxzUjLSu11fZQoaAZoCWgPQwgNqg1OxDVtQJSGlFKUaBVNVwJoFkdAlHHKrFOwgXV9lChoBmgJaA9DCMiVehaE2mtAlIaUUpRoFU0jAmgWR0CUc9Mvh60IdX2UKGgGaAloD0MIjC/a4wX8akCUhpRSlGgVTZsBaBZHQJR5INkOI691fZQoaAZoCWgPQwh15EhnYBJtQJSGlFKUaBVNpgJoFkdAlHt9WdVebHV9lChoBmgJaA9DCBBAahMnj29AlIaUUpRoFU1wAWgWR0CUf3+fh/AkdX2UKGgGaAloD0MID7iumBGEaECUhpRSlGgVTZgCaBZHQJSEXTfBN211fZQoaAZoCWgPQwjUfJV8bJNuQJSGlFKUaBVNCQJoFkdAlInmA08/2XV9lChoBmgJaA9DCMZq8/+qI2FAlIaUUpRoFU3oA2gWR0CUjGSzgMtsdX2UKGgGaAloD0MIGlJF8SpDJkCUhpRSlGgVTSQBaBZHQJSQXJeVs1t1fZQoaAZoCWgPQwjGqGvt/QVvQJSGlFKUaBVNrQFoFkdAlJgqIacZtXV9lChoBmgJaA9DCFMj9DN1Y2xAlIaUUpRoFU1HAmgWR0CUnYNcW0qpdX2UKGgGaAloD0MIf4P26mPvYkCUhpRSlGgVTegDaBZHQJSg3ps41gp1fZQoaAZoCWgPQwhPyqSGNl5RQJSGlFKUaBVN6ANoFkdAlKE6QeV9nnV9lChoBmgJaA9DCD57LlOTjGBAlIaUUpRoFU3oA2gWR0CUp7b2USqVdX2UKGgGaAloD0MISkT4F0HbSECUhpRSlGgVTegDaBZHQJSo3ZmI0qJ1fZQoaAZoCWgPQwgfTfVk/ohkQJSGlFKUaBVN6ANoFkdAlK+JD3M6inV9lChoBmgJaA9DCE1p/S2BrGBAlIaUUpRoFU3oA2gWR0CUsJ0waisXdX2UKGgGaAloD0MI0A64rpiJXkCUhpRSlGgVTegDaBZHQJS0uz9jwx51fZQoaAZoCWgPQwiasWg6O8EnQJSGlFKUaBVL6GgWR0CUt4kRBeHBdX2UKGgGaAloD0MIn1kSoCYiYECUhpRSlGgVTegDaBZHQJS4HyFwkxB1fZQoaAZoCWgPQwgK1jibDkRgQJSGlFKUaBVN6ANoFkdAlLgciGFi8XV9lChoBmgJaA9DCD2a6sm85XBAlIaUUpRoFU2GAmgWR0CUuDNpdrwfdX2UKGgGaAloD0MIy9jQzT7fckCUhpRSlGgVTZwCaBZHQJS7j0TURWd1fZQoaAZoCWgPQwiopiTrcHltQJSGlFKUaBVNmwFoFkdAlLxfvKEFn3V9lChoBmgJaA9DCOHs1jIZflxAlIaUUpRoFU3oA2gWR0CUxTe18b71dX2UKGgGaAloD0MIurvOhvzuWkCUhpRSlGgVTegDaBZHQJTKgtPHktF1fZQoaAZoCWgPQwivQV96e2JrQJSGlFKUaBVNrwFoFkdAlWskbxVhkXV9lChoBmgJaA9DCP+xEB2Ca21AlIaUUpRoFU1FAWgWR0CVa3/fwZwXdX2UKGgGaAloD0MIisiwijeSb0CUhpRSlGgVTdQCaBZHQJVr91zQu291fZQoaAZoCWgPQwhVh9wMt+drQJSGlFKUaBVNsgFoFkdAlW8Svkili3V9lChoBmgJaA9DCM0eaAXGe3BAlIaUUpRoFU1+A2gWR0CVb49FF2FGdX2UKGgGaAloD0MIlx+4yhMfUUCUhpRSlGgVTegDaBZHQJVv0OLBKth1fZQoaAZoCWgPQwhkdha9UwEVwJSGlFKUaBVL7mgWR0CVb97KaG5+dX2UKGgGaAloD0MIlgm/1E9+cECUhpRSlGgVTccBaBZHQJVwXDO1OTJ1fZQoaAZoCWgPQwj2RNeFnyxvQJSGlFKUaBVN8gFoFkdAlXKkKzAvc3V9lChoBmgJaA9DCGPVIMzt62BAlIaUUpRoFU3oA2gWR0CVeQ1TR6WxdX2UKGgGaAloD0MIh8Woa+09+T+UhpRSlGgVS/doFkdAlXmncYZVGXV9lChoBmgJaA9DCAHAsWcPQXBAlIaUUpRoFU1EAmgWR0CVeyM2WIGhdX2UKGgGaAloD0MIkncOZajSZECUhpRSlGgVTTEDaBZHQJV+UOqebut1fZQoaAZoCWgPQwjWyRmKu65hQJSGlFKUaBVNxQNoFkdAlYCF1fVqe3V9lChoBmgJaA9DCPzDlh7NQGxAlIaUUpRoFU1VAWgWR0CVg37GNrCWdX2UKGgGaAloD0MIecn/5G/dbECUhpRSlGgVTVsBaBZHQJWEOgqVhTh1fZQoaAZoCWgPQwjBcoQM5ENCwJSGlFKUaBVL02gWR0CVhnfms/6gdX2UKGgGaAloD0MITmIQWLnUbUCUhpRSlGgVTXwBaBZHQJWG82zfJmx1fZQoaAZoCWgPQwiWzLG8K0dvQJSGlFKUaBVN3AFoFkdAlYjQqur6tXV9lChoBmgJaA9DCF8KD5pdpVtAlIaUUpRoFU3oA2gWR0CViSpbD/EPdX2UKGgGaAloD0MIQMObNbjicECUhpRSlGgVTSICaBZHQJWMczj3mFJ1fZQoaAZoCWgPQwjMft3pzq5bQJSGlFKUaBVN6ANoFkdAlZArqdH2AXV9lChoBmgJaA9DCJuQ1hj0G29AlIaUUpRoFU2RAWgWR0CVkn6Zpi7TdX2UKGgGaAloD0MIZr6DnzgoKMCUhpRSlGgVS+5oFkdAlZKuYplSTHV9lChoBmgJaA9DCL4uw3+68G1AlIaUUpRoFU3mAWgWR0CVnij2Bas7dX2UKGgGaAloD0MIj8L1KFy1bkCUhpRSlGgVTZoBaBZHQJWeQt4A0bd1fZQoaAZoCWgPQwhX6INl7FZvQJSGlFKUaBVNmAFoFkdAlaG4nSfDk3V9lChoBmgJaA9DCP9YiA4BYm1AlIaUUpRoFU2RAWgWR0CVobh6jWTYdX2UKGgGaAloD0MIxYzw9iAObECUhpRSlGgVTcYDaBZHQJWiKR7qptJ1fZQoaAZoCWgPQwh0et6NhdZuQJSGlFKUaBVNcwFoFkdAlaZNehPCVXV9lChoBmgJaA9DCHrFU480QG5AlIaUUpRoFU17AmgWR0CVrBiOearndX2UKGgGaAloD0MI61OOyaKXcECUhpRSlGgVTZ8BaBZHQJWuhuuRs/J1fZQoaAZoCWgPQwhg5jv4iSNDQJSGlFKUaBVLrmgWR0CVrs28qWkadX2UKGgGaAloD0MIrB4wD5kiXkCUhpRSlGgVTegDaBZHQJWwsL+glGB1fZQoaAZoCWgPQwj+CwQBMtdYQJSGlFKUaBVN6ANoFkdAlbFyay8jA3V9lChoBmgJaA9DCKvtJvgmPmBAlIaUUpRoFU3oA2gWR0CVtRwjdHlPdX2UKGgGaAloD0MI48EWu31Wz7+UhpRSlGgVTQ4BaBZHQJW18EHMUyp1fZQoaAZoCWgPQwhxH7k16d5tQJSGlFKUaBVNTQFoFkdAlba6kAPuonV9lChoBmgJaA9DCNkJL8GpB25AlIaUUpRoFU1ZAWgWR0CVt5srNGExdX2UKGgGaAloD0MI0QfL2NDubkCUhpRSlGgVTVwBaBZHQJW6hIf8uSR1fZQoaAZoCWgPQwgKLev+sZhsQJSGlFKUaBVN+gJoFkdAlb1UHdGiH3V9lChoBmgJaA9DCFNZFHZRylZAlIaUUpRoFU3oA2gWR0CVvtoFV1fWdX2UKGgGaAloD0MIeeV628zTakCUhpRSlGgVTRwBaBZHQJW/RWp6yB11fZQoaAZoCWgPQwhkdavnZPRwQJSGlFKUaBVNSwFoFkdAlcR0g0TDfnV9lChoBmgJaA9DCHgKuVJPH29AlIaUUpRoFU3vAWgWR0CVyCVeKKpDdX2UKGgGaAloD0MIUN8yp8u3Y0CUhpRSlGgVTegDaBZHQJXNwQOFxn51fZQoaAZoCWgPQwgj9DP1Oj5uQJSGlFKUaBVNKQFoFkdAlc5UyckMTnV9lChoBmgJaA9DCOSFdHgIPHBAlIaUUpRoFU1xAWgWR0CVzlXAdn01dX2UKGgGaAloD0MIfbJiuDowG0CUhpRSlGgVTQ4BaBZHQJXQu9mHxjJ1fZQoaAZoCWgPQwgeGED40CJwQJSGlFKUaBVNPwFoFkdAldIuqvNeMXV9lChoBmgJaA9DCBJsXP+ur2tAlIaUUpRoFU1iAWgWR0CV1iA7gbZOdX2UKGgGaAloD0MIhzWVRWGpbECUhpRSlGgVTWgCaBZHQJXWrBMzuWt1fZQoaAZoCWgPQwjRd7eyxAJhQJSGlFKUaBVN6ANoFkdAldcAB1cMVnV9lChoBmgJaA9DCDupL0s7QGFAlIaUUpRoFU3oA2gWR0CV1zDlYEGJdX2UKGgGaAloD0MIvFmD95UUcECUhpRSlGgVTVsBaBZHQJXaHYg7o0R1fZQoaAZoCWgPQwj61RwgmNMrQJSGlFKUaBVNNAFoFkdAleMEmplz2nV9lChoBmgJaA9DCFOVtriGxHBAlIaUUpRoFU2wAWgWR0CV6Qdl/YrbdX2UKGgGaAloD0MIie3uATpBYkCUhpRSlGgVTXQDaBZHQJXpaZtvXK91fZQoaAZoCWgPQwioqtBAbEBwQJSGlFKUaBVNKAFoFkdAlelrr1M/QnV9lChoBmgJaA9DCH8UdeYeK2xAlIaUUpRoFU1sA2gWR0CV6aIsyzomdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9e49ac560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9e49ac5f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9e49ac680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9e49ac710>", "_build": "<function ActorCriticPolicy._build at 0x7fe9e49ac7a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe9e49ac830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9e49ac8c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe9e49ac950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9e49ac9e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9e49aca70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9e49acb00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe9e49f68d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652105561.0151844, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb/mTz2DGa61tPNN1d+TDNXTtA6hRLqtgAAgD8AAIA/gI1FPWyRw7s7x9K9UI/EvctY5DwS2ag+AACAPwAAgD+aQoE+41ELPXPu273zCVo9Vm/lPoBBG74AAIA/AAAAANpSkL0UnKG6gBleuVpiaravlIi6bpGAOAAAgD8AAIA/zRuPvMMxOroAit06kQIgNgKxqTvYogG6AACAPwAAgD/NHEg9XAsrui0mFbtz+j+2sxyxOpcHMToAAIA/AACAPyZ+pz1c2366p5EcuocA9ThRB+E6+tMiOQAAgD8AAIA/Jq8bPk/hHbwifLE7AqimvEjwhr1If1s9AACAPwAAAAAaEz++ZOfXPvsGJj7Qs7y+u7GWvAU8bTsAAAAAAAAAAI1evT0pRB68QjT6vUrXTb1OCX+900+xvQAAgD8AAIA/MwsnO3s2i7oXrY66d92WtdA8QTtJq6U5AACAPwAAgD8taQ8+PLZTPTjk4b30Bmy+JwR5vOf3gLsAAAAAAAAAAM2awrwdVbA+O/hXvSs0gb7fwTW9r7e6vAAAAAAAAAAApsG8PeGQsbo6+tI7t6GyNx0Shbl6q801AAAAAAAAgD+aFXM9CUe9Po6lDb53yDO+Ne24vD3e6rwAAAAAAAAAADMDg75oTpU9Px2VPqEnT75dChi9/zMDPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPxu5bsonYECUhpRSlIwBbJRN6AOMAXSUR0CQZI7vXsgMdX2UKGgGaAloD0MIhH6mXrecXECUhpRSlGgVTegDaBZHQJBk+8VYZEV1fZQoaAZoCWgPQwjovTEEAKFeQJSGlFKUaBVN6ANoFkdAkHrfF72L53V9lChoBmgJaA9DCFgepKfIKSLAlIaUUpRoFU1YAWgWR0CQex7EpAlfdX2UKGgGaAloD0MI8wNXeYLYY0CUhpRSlGgVTegDaBZHQJCAHUoa1kV1fZQoaAZoCWgPQwj0N6EQgS9iQJSGlFKUaBVN6ANoFkdAkIGP/vOQhnV9lChoBmgJaA9DCLyuX7CbSWNAlIaUUpRoFU3oA2gWR0CQkvn3L3bmdX2UKGgGaAloD0MI0Jz1Kcc/ZkCUhpRSlGgVTegDaBZHQJCcBMdtEXt1fZQoaAZoCWgPQwjGM2jonyBhQJSGlFKUaBVN6ANoFkdAkJ2D0th/iHV9lChoBmgJaA9DCF4wuOaOqVBAlIaUUpRoFU3oA2gWR0CQn6YLsruqdX2UKGgGaAloD0MI3jgpzHvaY0CUhpRSlGgVTegDaBZHQJCgt8G9pRJ1fZQoaAZoCWgPQwg3NGWnH6FXQJSGlFKUaBVN6ANoFkdAkKEcXvYvnXV9lChoBmgJaA9DCDi/YaLBdmVAlIaUUpRoFU3oA2gWR0CQoe5hBqsVdX2UKGgGaAloD0MIGHsvvujgYkCUhpRSlGgVTegDaBZHQJCiDXZoPCl1fZQoaAZoCWgPQwh1zeSbbXhiQJSGlFKUaBVN6ANoFkdAkKQYfCAMD3V9lChoBmgJaA9DCA4UeCefbWFAlIaUUpRoFU3oA2gWR0CQpV912aDxdX2UKGgGaAloD0MIK27cYn4sYUCUhpRSlGgVTegDaBZHQJCmDCKrJbN1fZQoaAZoCWgPQwikU1c+S8FjQJSGlFKUaBVN6ANoFkdAkKh2vStvGnV9lChoBmgJaA9DCHZrmQxH9mFAlIaUUpRoFU3oA2gWR0CQvxWgOBlMdX2UKGgGaAloD0MIrwrUYvDSZECUhpRSlGgVTegDaBZHQJC/Tyc0+C91fZQoaAZoCWgPQwilFd9QeGtmQJSGlFKUaBVN6ANoFkdAkMQQsK9f1HV9lChoBmgJaA9DCJTBUfLqa1pAlIaUUpRoFU3oA2gWR0CQxV+hGpdbdX2UKGgGaAloD0MI/g5FgT5wYECUhpRSlGgVTegDaBZHQJDVIADJU5x1fZQoaAZoCWgPQwhIisiwCmljQJSGlFKUaBVN6ANoFkdAkN2DSG8Em3V9lChoBmgJaA9DCA4QzNHjy2JAlIaUUpRoFU3oA2gWR0CQ3uBRhttRdX2UKGgGaAloD0MIsOJUa2FCYUCUhpRSlGgVTegDaBZHQJDgs84gieN1fZQoaAZoCWgPQwiw52uWy4FdQJSGlFKUaBVN6ANoFkdAkOGY60Y0mHV9lChoBmgJaA9DCG7DKAgeKF9AlIaUUpRoFU3oA2gWR0CQ4e/LDAJtdX2UKGgGaAloD0MIEJaxoZtOYkCUhpRSlGgVTegDaBZHQJDippeu3c51fZQoaAZoCWgPQwhy/FBpxBhEQJSGlFKUaBVN6ANoFkdAkOK92cJ+lXV9lChoBmgJaA9DCP1mYroQmFpAlIaUUpRoFU3oA2gWR0CQ5GC6Ymb9dX2UKGgGaAloD0MIu9HHfECZYECUhpRSlGgVTegDaBZHQJDlcLtu1nd1fZQoaAZoCWgPQwijsIuiB31iQJSGlFKUaBVN6ANoFkdAkOYUeZG8VnV9lChoBmgJaA9DCL2mBwWlSmNAlIaUUpRoFU3oA2gWR0CRRQorFwT/dX2UKGgGaAloD0MI2O+JdaqMTkCUhpRSlGgVS7RoFkdAkU7P1L8JlnV9lChoBmgJaA9DCD1/2qhOVGJAlIaUUpRoFU3oA2gWR0CRWzWuHN5ddX2UKGgGaAloD0MIwHgGDf2bX0CUhpRSlGgVTegDaBZHQJFbbgOz6ad1fZQoaAZoCWgPQwhFnE6y1YxiQJSGlFKUaBVN6ANoFkdAkV+V0o0ALnV9lChoBmgJaA9DCC/5n/zdjlJAlIaUUpRoFU3oA2gWR0CRYMzErGzbdX2UKGgGaAloD0MIQx1WuOVDX0CUhpRSlGgVTegDaBZHQJFwFsWO6up1fZQoaAZoCWgPQwjHKTqSywFaQJSGlFKUaBVN6ANoFkdAkXg2zOX3QHV9lChoBmgJaA9DCHODoQ4rmGJAlIaUUpRoFU3oA2gWR0CReYBciW3SdX2UKGgGaAloD0MIDafMzTf5VECUhpRSlGgVTegDaBZHQJF7YQlKK511fZQoaAZoCWgPQwhE+BdBY9JhQJSGlFKUaBVN6ANoFkdAkXxNqQA+6nV9lChoBmgJaA9DCGb0o+EUgmVAlIaUUpRoFU3oA2gWR0CRfKhXr+o+dX2UKGgGaAloD0MIlxsMdVhaW0CUhpRSlGgVTegDaBZHQJF9W9AX2uh1fZQoaAZoCWgPQwgLfEW33tBgQJSGlFKUaBVN6ANoFkdAkX11c+qzaHV9lChoBmgJaA9DCG+Ame/gTV5AlIaUUpRoFU3oA2gWR0CRf1GKQ7tBdX2UKGgGaAloD0MIFeXS+AULY0CUhpRSlGgVTegDaBZHQJGAeYG+sYF1fZQoaAZoCWgPQwgO+WcG8UNjQJSGlFKUaBVN6ANoFkdAkYEoOH31z3V9lChoBmgJaA9DCIjzcALTA2JAlIaUUpRoFU3oA2gWR0CRjm13t8eCdX2UKGgGaAloD0MIUMO3sO4GYkCUhpRSlGgVTegDaBZHQJGaYn4O+Zh1fZQoaAZoCWgPQwikNnFyv4xUQJSGlFKUaBVN6ANoFkdAkZqYF7laKXV9lChoBmgJaA9DCPn4hOy8GWJAlIaUUpRoFU3oA2gWR0CRnq78ejmCdX2UKGgGaAloD0MIqi11kNeDWECUhpRSlGgVTegDaBZHQJGf3fZVXFN1fZQoaAZoCWgPQwgKTRJLylhhQJSGlFKUaBVN6ANoFkdAka2txZMcqHV9lChoBmgJaA9DCJWdflAXPl9AlIaUUpRoFU3oA2gWR0CRtQJrLyMDdX2UKGgGaAloD0MIfVwbKsaDXkCUhpRSlGgVTegDaBZHQJG2M3zcynF1fZQoaAZoCWgPQwgsflNYqYJhQJSGlFKUaBVN6ANoFkdAkbfVtsN2DHV9lChoBmgJaA9DCD3TS4zlnWBAlIaUUpRoFU3oA2gWR0CRuKihFmWddX2UKGgGaAloD0MI3Zcz25XNYECUhpRSlGgVTegDaBZHQJG4/L5hz/91fZQoaAZoCWgPQwiR09fzNWtjQJSGlFKUaBVN6ANoFkdAkbmujIq9XnV9lChoBmgJaA9DCCIYB5cOZmJAlIaUUpRoFU3oA2gWR0CRuchLoOhCdX2UKGgGaAloD0MI3lSkwth+YUCUhpRSlGgVTegDaBZHQJG7aloDgZV1fZQoaAZoCWgPQwgNp8zNt7BlQJSGlFKUaBVN6ANoFkdAkbxsrd30PHV9lChoBmgJaA9DCLyVJTrLLVdAlIaUUpRoFU3oA2gWR0CRvQbSZ0CBdX2UKGgGaAloD0MI2ZlC5zVIZ0CUhpRSlGgVTegDaBZHQJIlg3fhuO11fZQoaAZoCWgPQwjAPjp15TxiQJSGlFKUaBVN6ANoFkdAkjAcijcmB3V9lChoBmgJaA9DCJpC5zX2wGJAlIaUUpRoFU3oA2gWR0CSMEwOe8PGdX2UKGgGaAloD0MITyMtlTcGYkCUhpRSlGgVTegDaBZHQJIzzzundft1fZQoaAZoCWgPQwhIaqFkcpVgQJSGlFKUaBVN6ANoFkdAkjThhx5s03V9lChoBmgJaA9DCHJuE+5VpnJAlIaUUpRoFU1AAmgWR0CSNR9ycTakdX2UKGgGaAloD0MIVKhuLv7gRkCUhpRSlGgVS9poFkdAkkArDAJswnV9lChoBmgJaA9DCCdKQiLtCWNAlIaUUpRoFU3oA2gWR0CSQRxaxHG0dX2UKGgGaAloD0MIE36pn7c6YkCUhpRSlGgVTegDaBZHQJJHypFTeft1fZQoaAZoCWgPQwjVko5yMJBhQJSGlFKUaBVN6ANoFkdAkkjhi5NGmXV9lChoBmgJaA9DCGFSfHzC02JAlIaUUpRoFU3oA2gWR0CSSoAVO9FndX2UKGgGaAloD0MILzTXaSRZaECUhpRSlGgVTegDaBZHQJJLTHPu5SZ1fZQoaAZoCWgPQwhjfm5oSuJiQJSGlFKUaBVN6ANoFkdAkkuY7eVLSXV9lChoBmgJaA9DCJ1lFqHYtERAlIaUUpRoFUvTaBZHQJJMOFDfFaV1fZQoaAZoCWgPQwghPrDjP2pjQJSGlFKUaBVN6ANoFkdAkkxNFjNILHV9lChoBmgJaA9DCHnL1Y9NDFFAlIaUUpRoFU3oA2gWR0CSTgT9KmKqdX2UKGgGaAloD0MIf4eiQB/7YUCUhpRSlGgVTegDaBZHQJJPEd92HL11fZQoaAZoCWgPQwhTBDi9ixFmQJSGlFKUaBVN6ANoFkdAkk+udf9gnnV9lChoBmgJaA9DCM0d/S9XZ2JAlIaUUpRoFU3oA2gWR0CSWzShJyyVdX2UKGgGaAloD0MIH/XXKyyOYECUhpRSlGgVTegDaBZHQJJlWK/Efkp1fZQoaAZoCWgPQwgV/3dEBfRnQJSGlFKUaBVN6ANoFkdAkmWIixFAmnV9lChoBmgJaA9DCD0s1JrmWmNAlIaUUpRoFU3oA2gWR0CSaOw6hg3MdX2UKGgGaAloD0MIggLv5NOiXkCUhpRSlGgVTegDaBZHQJJqJQemvW91fZQoaAZoCWgPQwgh5pKqbbFiQJSGlFKUaBVN6ANoFkdAknY6z7di2HV9lChoBmgJaA9DCFOT4A1pSmVAlIaUUpRoFU3oA2gWR0CSfM4JNTLodX2UKGgGaAloD0MIv2GiQQoUZkCUhpRSlGgVTegDaBZHQJJ94XrMTvl1fZQoaAZoCWgPQwiNgApHEKFjQJSGlFKUaBVN6ANoFkdAkn9iEDhcaHV9lChoBmgJaA9DCCHNWDQdLGBAlIaUUpRoFU3oA2gWR0CSgCOGTLW7dX2UKGgGaAloD0MIyt5Szhd+ZkCUhpRSlGgVTegDaBZHQJKAcNhE0BR1fZQoaAZoCWgPQwg5CaUvBCVoQJSGlFKUaBVN6ANoFkdAkoENoJzDGnV9lChoBmgJaA9DCDQtsTIa72FAlIaUUpRoFU3oA2gWR0CSgSFH8TBZdX2UKGgGaAloD0MI0csoltsfYUCUhpRSlGgVTegDaBZHQJKCo93bEgp1fZQoaAZoCWgPQwjR56OMOAFkQJSGlFKUaBVN6ANoFkdAkoORDohY/3V9lChoBmgJaA9DCPSnjep0WGJAlIaUUpRoFU3oA2gWR0CShCGlANXpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-test.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9ded1f1b6137f1ef5e5c856494c9aa18c4139dbe6ce273c5cee4192ab144c33
|
3 |
+
size 144105
|
ppo-LunarLander-test/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -47,16 +47,16 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
-
"learning_rate": 0.
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,7 +69,7 @@
|
|
69 |
"_current_progress_remaining": -0.04857599999999995,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9e49ac560>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9e49ac5f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9e49ac680>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9e49ac710>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe9e49ac7a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe9e49ac830>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9e49ac8c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe9e49ac950>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9e49ac9e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9e49aca70>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9e49acb00>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe9e49f68d0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652105561.0151844,
|
51 |
+
"learning_rate": 0.001,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb/mTz2DGa61tPNN1d+TDNXTtA6hRLqtgAAgD8AAIA/gI1FPWyRw7s7x9K9UI/EvctY5DwS2ag+AACAPwAAgD+aQoE+41ELPXPu273zCVo9Vm/lPoBBG74AAIA/AAAAANpSkL0UnKG6gBleuVpiaravlIi6bpGAOAAAgD8AAIA/zRuPvMMxOroAit06kQIgNgKxqTvYogG6AACAPwAAgD/NHEg9XAsrui0mFbtz+j+2sxyxOpcHMToAAIA/AACAPyZ+pz1c2366p5EcuocA9ThRB+E6+tMiOQAAgD8AAIA/Jq8bPk/hHbwifLE7AqimvEjwhr1If1s9AACAPwAAAAAaEz++ZOfXPvsGJj7Qs7y+u7GWvAU8bTsAAAAAAAAAAI1evT0pRB68QjT6vUrXTb1OCX+900+xvQAAgD8AAIA/MwsnO3s2i7oXrY66d92WtdA8QTtJq6U5AACAPwAAgD8taQ8+PLZTPTjk4b30Bmy+JwR5vOf3gLsAAAAAAAAAAM2awrwdVbA+O/hXvSs0gb7fwTW9r7e6vAAAAAAAAAAApsG8PeGQsbo6+tI7t6GyNx0Shbl6q801AAAAAAAAgD+aFXM9CUe9Po6lDb53yDO+Ne24vD3e6rwAAAAAAAAAADMDg75oTpU9Px2VPqEnT75dChi9/zMDPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.04857599999999995,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPxu5bsonYECUhpRSlIwBbJRN6AOMAXSUR0CQZI7vXsgMdX2UKGgGaAloD0MIhH6mXrecXECUhpRSlGgVTegDaBZHQJBk+8VYZEV1fZQoaAZoCWgPQwjovTEEAKFeQJSGlFKUaBVN6ANoFkdAkHrfF72L53V9lChoBmgJaA9DCFgepKfIKSLAlIaUUpRoFU1YAWgWR0CQex7EpAlfdX2UKGgGaAloD0MI8wNXeYLYY0CUhpRSlGgVTegDaBZHQJCAHUoa1kV1fZQoaAZoCWgPQwj0N6EQgS9iQJSGlFKUaBVN6ANoFkdAkIGP/vOQhnV9lChoBmgJaA9DCLyuX7CbSWNAlIaUUpRoFU3oA2gWR0CQkvn3L3bmdX2UKGgGaAloD0MI0Jz1Kcc/ZkCUhpRSlGgVTegDaBZHQJCcBMdtEXt1fZQoaAZoCWgPQwjGM2jonyBhQJSGlFKUaBVN6ANoFkdAkJ2D0th/iHV9lChoBmgJaA9DCF4wuOaOqVBAlIaUUpRoFU3oA2gWR0CQn6YLsruqdX2UKGgGaAloD0MI3jgpzHvaY0CUhpRSlGgVTegDaBZHQJCgt8G9pRJ1fZQoaAZoCWgPQwg3NGWnH6FXQJSGlFKUaBVN6ANoFkdAkKEcXvYvnXV9lChoBmgJaA9DCDi/YaLBdmVAlIaUUpRoFU3oA2gWR0CQoe5hBqsVdX2UKGgGaAloD0MIGHsvvujgYkCUhpRSlGgVTegDaBZHQJCiDXZoPCl1fZQoaAZoCWgPQwh1zeSbbXhiQJSGlFKUaBVN6ANoFkdAkKQYfCAMD3V9lChoBmgJaA9DCA4UeCefbWFAlIaUUpRoFU3oA2gWR0CQpV912aDxdX2UKGgGaAloD0MIK27cYn4sYUCUhpRSlGgVTegDaBZHQJCmDCKrJbN1fZQoaAZoCWgPQwikU1c+S8FjQJSGlFKUaBVN6ANoFkdAkKh2vStvGnV9lChoBmgJaA9DCHZrmQxH9mFAlIaUUpRoFU3oA2gWR0CQvxWgOBlMdX2UKGgGaAloD0MIrwrUYvDSZECUhpRSlGgVTegDaBZHQJC/Tyc0+C91fZQoaAZoCWgPQwilFd9QeGtmQJSGlFKUaBVN6ANoFkdAkMQQsK9f1HV9lChoBmgJaA9DCJTBUfLqa1pAlIaUUpRoFU3oA2gWR0CQxV+hGpdbdX2UKGgGaAloD0MI/g5FgT5wYECUhpRSlGgVTegDaBZHQJDVIADJU5x1fZQoaAZoCWgPQwhIisiwCmljQJSGlFKUaBVN6ANoFkdAkN2DSG8Em3V9lChoBmgJaA9DCA4QzNHjy2JAlIaUUpRoFU3oA2gWR0CQ3uBRhttRdX2UKGgGaAloD0MIsOJUa2FCYUCUhpRSlGgVTegDaBZHQJDgs84gieN1fZQoaAZoCWgPQwiw52uWy4FdQJSGlFKUaBVN6ANoFkdAkOGY60Y0mHV9lChoBmgJaA9DCG7DKAgeKF9AlIaUUpRoFU3oA2gWR0CQ4e/LDAJtdX2UKGgGaAloD0MIEJaxoZtOYkCUhpRSlGgVTegDaBZHQJDippeu3c51fZQoaAZoCWgPQwhy/FBpxBhEQJSGlFKUaBVN6ANoFkdAkOK92cJ+lXV9lChoBmgJaA9DCP1mYroQmFpAlIaUUpRoFU3oA2gWR0CQ5GC6Ymb9dX2UKGgGaAloD0MIu9HHfECZYECUhpRSlGgVTegDaBZHQJDlcLtu1nd1fZQoaAZoCWgPQwijsIuiB31iQJSGlFKUaBVN6ANoFkdAkOYUeZG8VnV9lChoBmgJaA9DCL2mBwWlSmNAlIaUUpRoFU3oA2gWR0CRRQorFwT/dX2UKGgGaAloD0MI2O+JdaqMTkCUhpRSlGgVS7RoFkdAkU7P1L8JlnV9lChoBmgJaA9DCD1/2qhOVGJAlIaUUpRoFU3oA2gWR0CRWzWuHN5ddX2UKGgGaAloD0MIwHgGDf2bX0CUhpRSlGgVTegDaBZHQJFbbgOz6ad1fZQoaAZoCWgPQwhFnE6y1YxiQJSGlFKUaBVN6ANoFkdAkV+V0o0ALnV9lChoBmgJaA9DCC/5n/zdjlJAlIaUUpRoFU3oA2gWR0CRYMzErGzbdX2UKGgGaAloD0MIQx1WuOVDX0CUhpRSlGgVTegDaBZHQJFwFsWO6up1fZQoaAZoCWgPQwjHKTqSywFaQJSGlFKUaBVN6ANoFkdAkXg2zOX3QHV9lChoBmgJaA9DCHODoQ4rmGJAlIaUUpRoFU3oA2gWR0CReYBciW3SdX2UKGgGaAloD0MIDafMzTf5VECUhpRSlGgVTegDaBZHQJF7YQlKK511fZQoaAZoCWgPQwhE+BdBY9JhQJSGlFKUaBVN6ANoFkdAkXxNqQA+6nV9lChoBmgJaA9DCGb0o+EUgmVAlIaUUpRoFU3oA2gWR0CRfKhXr+o+dX2UKGgGaAloD0MIlxsMdVhaW0CUhpRSlGgVTegDaBZHQJF9W9AX2uh1fZQoaAZoCWgPQwgLfEW33tBgQJSGlFKUaBVN6ANoFkdAkX11c+qzaHV9lChoBmgJaA9DCG+Ame/gTV5AlIaUUpRoFU3oA2gWR0CRf1GKQ7tBdX2UKGgGaAloD0MIFeXS+AULY0CUhpRSlGgVTegDaBZHQJGAeYG+sYF1fZQoaAZoCWgPQwgO+WcG8UNjQJSGlFKUaBVN6ANoFkdAkYEoOH31z3V9lChoBmgJaA9DCIjzcALTA2JAlIaUUpRoFU3oA2gWR0CRjm13t8eCdX2UKGgGaAloD0MIUMO3sO4GYkCUhpRSlGgVTegDaBZHQJGaYn4O+Zh1fZQoaAZoCWgPQwikNnFyv4xUQJSGlFKUaBVN6ANoFkdAkZqYF7laKXV9lChoBmgJaA9DCPn4hOy8GWJAlIaUUpRoFU3oA2gWR0CRnq78ejmCdX2UKGgGaAloD0MIqi11kNeDWECUhpRSlGgVTegDaBZHQJGf3fZVXFN1fZQoaAZoCWgPQwgKTRJLylhhQJSGlFKUaBVN6ANoFkdAka2txZMcqHV9lChoBmgJaA9DCJWdflAXPl9AlIaUUpRoFU3oA2gWR0CRtQJrLyMDdX2UKGgGaAloD0MIfVwbKsaDXkCUhpRSlGgVTegDaBZHQJG2M3zcynF1fZQoaAZoCWgPQwgsflNYqYJhQJSGlFKUaBVN6ANoFkdAkbfVtsN2DHV9lChoBmgJaA9DCD3TS4zlnWBAlIaUUpRoFU3oA2gWR0CRuKihFmWddX2UKGgGaAloD0MI3Zcz25XNYECUhpRSlGgVTegDaBZHQJG4/L5hz/91fZQoaAZoCWgPQwiR09fzNWtjQJSGlFKUaBVN6ANoFkdAkbmujIq9XnV9lChoBmgJaA9DCCIYB5cOZmJAlIaUUpRoFU3oA2gWR0CRuchLoOhCdX2UKGgGaAloD0MI3lSkwth+YUCUhpRSlGgVTegDaBZHQJG7aloDgZV1fZQoaAZoCWgPQwgNp8zNt7BlQJSGlFKUaBVN6ANoFkdAkbxsrd30PHV9lChoBmgJaA9DCLyVJTrLLVdAlIaUUpRoFU3oA2gWR0CRvQbSZ0CBdX2UKGgGaAloD0MI2ZlC5zVIZ0CUhpRSlGgVTegDaBZHQJIlg3fhuO11fZQoaAZoCWgPQwjAPjp15TxiQJSGlFKUaBVN6ANoFkdAkjAcijcmB3V9lChoBmgJaA9DCJpC5zX2wGJAlIaUUpRoFU3oA2gWR0CSMEwOe8PGdX2UKGgGaAloD0MITyMtlTcGYkCUhpRSlGgVTegDaBZHQJIzzzundft1fZQoaAZoCWgPQwhIaqFkcpVgQJSGlFKUaBVN6ANoFkdAkjThhx5s03V9lChoBmgJaA9DCHJuE+5VpnJAlIaUUpRoFU1AAmgWR0CSNR9ycTakdX2UKGgGaAloD0MIVKhuLv7gRkCUhpRSlGgVS9poFkdAkkArDAJswnV9lChoBmgJaA9DCCdKQiLtCWNAlIaUUpRoFU3oA2gWR0CSQRxaxHG0dX2UKGgGaAloD0MIE36pn7c6YkCUhpRSlGgVTegDaBZHQJJHypFTeft1fZQoaAZoCWgPQwjVko5yMJBhQJSGlFKUaBVN6ANoFkdAkkjhi5NGmXV9lChoBmgJaA9DCGFSfHzC02JAlIaUUpRoFU3oA2gWR0CSSoAVO9FndX2UKGgGaAloD0MILzTXaSRZaECUhpRSlGgVTegDaBZHQJJLTHPu5SZ1fZQoaAZoCWgPQwhjfm5oSuJiQJSGlFKUaBVN6ANoFkdAkkuY7eVLSXV9lChoBmgJaA9DCJ1lFqHYtERAlIaUUpRoFUvTaBZHQJJMOFDfFaV1fZQoaAZoCWgPQwghPrDjP2pjQJSGlFKUaBVN6ANoFkdAkkxNFjNILHV9lChoBmgJaA9DCHnL1Y9NDFFAlIaUUpRoFU3oA2gWR0CSTgT9KmKqdX2UKGgGaAloD0MIf4eiQB/7YUCUhpRSlGgVTegDaBZHQJJPEd92HL11fZQoaAZoCWgPQwhTBDi9ixFmQJSGlFKUaBVN6ANoFkdAkk+udf9gnnV9lChoBmgJaA9DCM0d/S9XZ2JAlIaUUpRoFU3oA2gWR0CSWzShJyyVdX2UKGgGaAloD0MIH/XXKyyOYECUhpRSlGgVTegDaBZHQJJlWK/Efkp1fZQoaAZoCWgPQwgV/3dEBfRnQJSGlFKUaBVN6ANoFkdAkmWIixFAmnV9lChoBmgJaA9DCD0s1JrmWmNAlIaUUpRoFU3oA2gWR0CSaOw6hg3MdX2UKGgGaAloD0MIggLv5NOiXkCUhpRSlGgVTegDaBZHQJJqJQemvW91fZQoaAZoCWgPQwgh5pKqbbFiQJSGlFKUaBVN6ANoFkdAknY6z7di2HV9lChoBmgJaA9DCFOT4A1pSmVAlIaUUpRoFU3oA2gWR0CSfM4JNTLodX2UKGgGaAloD0MIv2GiQQoUZkCUhpRSlGgVTegDaBZHQJJ94XrMTvl1fZQoaAZoCWgPQwiNgApHEKFjQJSGlFKUaBVN6ANoFkdAkn9iEDhcaHV9lChoBmgJaA9DCCHNWDQdLGBAlIaUUpRoFU3oA2gWR0CSgCOGTLW7dX2UKGgGaAloD0MIyt5Szhd+ZkCUhpRSlGgVTegDaBZHQJKAcNhE0BR1fZQoaAZoCWgPQwg5CaUvBCVoQJSGlFKUaBVN6ANoFkdAkoENoJzDGnV9lChoBmgJaA9DCDQtsTIa72FAlIaUUpRoFU3oA2gWR0CSgSFH8TBZdX2UKGgGaAloD0MI0csoltsfYUCUhpRSlGgVTegDaBZHQJKCo93bEgp1fZQoaAZoCWgPQwjR56OMOAFkQJSGlFKUaBVN6ANoFkdAkoORDohY/3V9lChoBmgJaA9DCPSnjep0WGJAlIaUUpRoFU3oA2gWR0CShCGlANXpdWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
ppo-LunarLander-test/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecce595bc95b8d4cb5f879e7138a4c3daab4ecacff4474d43312defa3e91626d
|
3 |
size 84893
|
ppo-LunarLander-test/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42eec01fc151fe2f149a7c9f812268e1cb9e80f998d4532fadc5a64cff65c939
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1a39546048c0e01ba598ce8b6207a95256f89dd7739f445852f70faae7f17d0
|
3 |
+
size 195120
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 257.69428469496273, "std_reward": 14.913149506922178, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T14:40:26.442385"}
|