angelinux commited on
Commit
fd44e8b
·
1 Parent(s): 49e8737

new course new life

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 260.50 +/- 21.76
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f360b3069d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f360b306a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f360b306af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f360b306b80>", "_build": "<function ActorCriticPolicy._build at 0x7f360b306c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f360b306ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f360b306d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f360b306dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f360b306e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f360b306ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f360b306f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f360b30a040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f360b3071b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673530807910771827, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALrYMr47/q8/ViPxvrETw74xLJO+xoPSvQAAAAAAAAAATflzvcMFPLpyDra6KWoiNh20urvFKdM5AACAPwAAgD9mbyY9rnmyukZ2ALs6Chg3nN8guZxoszkAAIA/AACAP81m7LxIK5W6GnNaOEnuYjNFI9S6SEp8twAAgD8AAIA/04CQPhFMjD/GKbY+7yLZvtwPyj4mKFy8AAAAAAAAAACaqlU9XEtXuqDXZrXC/IWwT9mDOooWojQAAIA/AACAP9rImz3DCWK6KpYxvM5NlzX/t5M5sOsKtQAAgD8AAAAAM78qPeGsibqBEiG488vvsm0WObtl6zo3AACAPwAAgD/N+4c8KcBZulCiezsJuDo11bFbunFokLoAAIA/AACAP5pelzyPrmS6QJd2uYuOZLTe4Qe6eVGQOAAAgD8AAIA/5sFJPeHUiLqEWqi5jz7+NQLKQbvQmGO1AACAPwAAgD8NXpw97AnauSbRwbrmvly104SvOupF4TkAAIA/AACAP3MjnD0f6tC7W4YTvjKlGL7HAj09pjoDPwAAgD8AAIA/AI9lPUjxm7q7Kzg5vSG1NE8m6roTlVS4AACAPwAAgD+ajMw89gR6uqXkAbU5in2wnOanukaGajQAAIA/AACAP5rJvT0pyGO6wCLaO5dpyjd7O9i6vVodNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEOhM2tTWZkCUhpRSlIwBbJRN6AOMAXSUR0CVLJJMxoIwdX2UKGgGaAloD0MIgehJmVSYZkCUhpRSlGgVTegDaBZHQJUt12r4nF51fZQoaAZoCWgPQwhqwvaTsQ1hQJSGlFKUaBVN6ANoFkdAlUG1pKzzE3V9lChoBmgJaA9DCAPOUrIcC2JAlIaUUpRoFU3oA2gWR0CVSlHD7655dX2UKGgGaAloD0MINnSzP1DaSUCUhpRSlGgVS9hoFkdAlU3B0EHMU3V9lChoBmgJaA9DCOOo3EQt3SVAlIaUUpRoFUvdaBZHQJVPKbx3FDR1fZQoaAZoCWgPQwgP7zmwnOpgQJSGlFKUaBVN6ANoFkdAlVT1tCRfW3V9lChoBmgJaA9DCK+YEd4eBktAlIaUUpRoFUvIaBZHQJVabB+F10V1fZQoaAZoCWgPQwjPTDCcaxNkQJSGlFKUaBVN6ANoFkdAlVtxcAzYVnV9lChoBmgJaA9DCH1Yb9QKDWBAlIaUUpRoFU3oA2gWR0CVXUSJ0nw5dX2UKGgGaAloD0MI8s02N6anGcCUhpRSlGgVS+doFkdAlV2suzyBkXV9lChoBmgJaA9DCFddh2pK5GNAlIaUUpRoFU3oA2gWR0CVYvHDaXa8dX2UKGgGaAloD0MIwvwVMlflZUCUhpRSlGgVTegDaBZHQJVlTAP/aQF1fZQoaAZoCWgPQwgVrdwLzJoyQJSGlFKUaBVL1mgWR0CVZopwCKaYdX2UKGgGaAloD0MIGavN/6tGYECUhpRSlGgVTegDaBZHQJVo1fCyhSN1fZQoaAZoCWgPQwi+vWvQl/xgQJSGlFKUaBVN6ANoFkdAlWjwMlTm4nV9lChoBmgJaA9DCIrNx7Uh5GBAlIaUUpRoFU3oA2gWR0CVa+CD28IzdX2UKGgGaAloD0MI1Qj9TL1lZECUhpRSlGgVTegDaBZHQJVtO37UG3Z1fZQoaAZoCWgPQwhhNZawthdjQJSGlFKUaBVN6ANoFkdAlXDb7wazeHV9lChoBmgJaA9DCLd546QwbGBAlIaUUpRoFU3oA2gWR0CVcarDqGDddX2UKGgGaAloD0MItoE7UKeqYkCUhpRSlGgVTegDaBZHQJV0wxYaHbh1fZQoaAZoCWgPQwgj9Z7Kac1fQJSGlFKUaBVN6ANoFkdAlXiYQvpQlHV9lChoBmgJaA9DCLAe963WgUVAlIaUUpRoFUv8aBZHQJWTBi8WbgF1fZQoaAZoCWgPQwjs+ZrlsuRjQJSGlFKUaBVN6ANoFkdAlZayzPa+OHV9lChoBmgJaA9DCBEbLJykH1BAlIaUUpRoFUvpaBZHQJWaDo5ggHN1fZQoaAZoCWgPQwh3TrNAO+xhQJSGlFKUaBVN6ANoFkdAlaHbbHp8nnV9lChoBmgJaA9DCNDukGKAbD1AlIaUUpRoFUvbaBZHQJWlNGNJe3R1fZQoaAZoCWgPQwj03hgCALRhQJSGlFKUaBVN6ANoFkdAlaix2r4nGHV9lChoBmgJaA9DCAkyAiqcNGJAlIaUUpRoFU3oA2gWR0CVqqsdkrf+dX2UKGgGaAloD0MIJCu/DMZ0ZECUhpRSlGgVTegDaBZHQJWrJ9JBgNR1fZQoaAZoCWgPQwgyrOKNzEBjQJSGlFKUaBVN6ANoFkdAlbEYYm9g4XV9lChoBmgJaA9DCJj2zf1V6WJAlIaUUpRoFU3oA2gWR0CVs7u9eyAydX2UKGgGaAloD0MIacnjaXmXYUCUhpRSlGgVTegDaBZHQJW1HDpC8e11fZQoaAZoCWgPQwj+gXLbPlphQJSGlFKUaBVN6ANoFkdAlbepyMkyDnV9lChoBmgJaA9DCMK9Mm/V2UNAlIaUUpRoFUvxaBZHQJW3q3UhFE11fZQoaAZoCWgPQwiDbFm+ruhhQJSGlFKUaBVN6ANoFkdAlbfKjBVMmHV9lChoBmgJaA9DCEesxacAPGVAlIaUUpRoFU3oA2gWR0CVuwRu0kWzdX2UKGgGaAloD0MIceSByCIHZUCUhpRSlGgVTegDaBZHQJW8hqesgdR1fZQoaAZoCWgPQwiFP8ObtT9hQJSGlFKUaBVN6ANoFkdAlcBsBMi8nXV9lChoBmgJaA9DCJ1IMNXMk2JAlIaUUpRoFU3oA2gWR0CVxLX+l0o0dX2UKGgGaAloD0MIsi/ZeLB8UECUhpRSlGgVS7loFkdAleKm+oLofXV9lChoBmgJaA9DCPbrTnee32ZAlIaUUpRoFU3oA2gWR0CV4vy/9Hc2dX2UKGgGaAloD0MIbLWHvVDAW0CUhpRSlGgVTegDaBZHQJXqHoW56MR1fZQoaAZoCWgPQwiASpUo+3pjQJSGlFKUaBVN6ANoFkdAlfILPY4ACHV9lChoBmgJaA9DCPrRcMrckF9AlIaUUpRoFU3oA2gWR0CV9T76pHZsdX2UKGgGaAloD0MI/+cwX176YkCUhpRSlGgVTegDaBZHQJX6TY02tMh1fZQoaAZoCWgPQwhbXU4JCJNiQJSGlFKUaBVN6ANoFkdAlfq8C9ytFXV9lChoBmgJaA9DCEYkCi3rkVFAlIaUUpRoFUu0aBZHQJX9PD8+A3F1fZQoaAZoCWgPQwiUv3tHDUpgQJSGlFKUaBVN6ANoFkdAlgBOt0V8C3V9lChoBmgJaA9DCAVSYtd2oWVAlIaUUpRoFU3oA2gWR0CWAo+n62v0dX2UKGgGaAloD0MIiPccWI4AYECUhpRSlGgVTegDaBZHQJYDxI065oZ1fZQoaAZoCWgPQwgrMjogie5kQJSGlFKUaBVN6ANoFkdAlgYS88La3HV9lChoBmgJaA9DCKJGIcmssWVAlIaUUpRoFU3oA2gWR0CWBhQyyleodX2UKGgGaAloD0MIs82N6QnAYUCUhpRSlGgVTegDaBZHQJYGMQFs54p1fZQoaAZoCWgPQwi1boPa7zlkQJSGlFKUaBVN6ANoFkdAlgj3L7oB73V9lChoBmgJaA9DCE+y1eWUrk9AlIaUUpRoFUu2aBZHQJYJcma6ST11fZQoaAZoCWgPQwhzEd+JWVtcQJSGlFKUaBVN6ANoFkdAlgoZCngpB3V9lChoBmgJaA9DCDONJhdjhmJAlIaUUpRoFU3oA2gWR0CWDR6J66atdX2UKGgGaAloD0MIBi/6CtLsAUCUhpRSlGgVS9xoFkdAlg+H+qBEr3V9lChoBmgJaA9DCHhha7byBjFAlIaUUpRoFUvzaBZHQJYQlivxH5J1fZQoaAZoCWgPQwjjGTT0T4BQQJSGlFKUaBVLrWgWR0CWLK53C9AYdX2UKGgGaAloD0MI78uZ7YpkY0CUhpRSlGgVTegDaBZHQJYtOBGx2St1fZQoaAZoCWgPQwjfiO5Z1/tnQJSGlFKUaBVN6ANoFkdAli2PQ0GeMHV9lChoBmgJaA9DCPG3PUHiDWFAlIaUUpRoFU3oA2gWR0CWNAuXNTtLdX2UKGgGaAloD0MIrkZ2pWVKZUCUhpRSlGgVTegDaBZHQJY+dqCYkVx1fZQoaAZoCWgPQwgLs9DOaRpMQJSGlFKUaBVLtmgWR0CWP1y44Ia+dX2UKGgGaAloD0MIGQCquPHuZkCUhpRSlGgVTegDaBZHQJZD0W1twaR1fZQoaAZoCWgPQwhEboYbcJRjQJSGlFKUaBVN6ANoFkdAlkQ6zzErG3V9lChoBmgJaA9DCNFdEmdFhGRAlIaUUpRoFU3oA2gWR0CWRojEvTPTdX2UKGgGaAloD0MId/NUh9xiZkCUhpRSlGgVTegDaBZHQJZMRHLA57x1fZQoaAZoCWgPQwgo1T4dDwpoQJSGlFKUaBVN6ANoFkdAlk2J/5LytnV9lChoBmgJaA9DCLMmFvgKv2BAlIaUUpRoFU3oA2gWR0CWUDU4aP0adX2UKGgGaAloD0MIamluhTCJY0CUhpRSlGgVTegDaBZHQJZTy8nNPgx1fZQoaAZoCWgPQwhsBU1LLNdhQJSGlFKUaBVN6ANoFkdAllRtNN8E3nV9lChoBmgJaA9DCEsBaf8DOWRAlIaUUpRoFU3oA2gWR0CWVVB+WnjydX2UKGgGaAloD0MIngsjvahdZUCUhpRSlGgVTegDaBZHQJZZMJtzjm11fZQoaAZoCWgPQwiaX80BgiU3QJSGlFKUaBVL92gWR0CWW4Pacqe9dX2UKGgGaAloD0MIzT0kfO/YWkCUhpRSlGgVTegDaBZHQJZcU4ACGN91fZQoaAZoCWgPQwjNdoU+2KphQJSGlFKUaBVN6ANoFkdAlmePapPykXV9lChoBmgJaA9DCL7aUZyj12ZAlIaUUpRoFU3oA2gWR0CWaC09yLhrdX2UKGgGaAloD0MImiLA6V0WY0CUhpRSlGgVTegDaBZHQJZogVO9FnZ1fZQoaAZoCWgPQwgIyJdQwSEtQJSGlFKUaBVL1WgWR0CWh7FnIyTIdX2UKGgGaAloD0MIaTaPw2DeY0CUhpRSlGgVTegDaBZHQJaMPUoa1kV1fZQoaAZoCWgPQwhl/tE3aR5bQJSGlFKUaBVN6ANoFkdAlo0dLpRoAXV9lChoBmgJaA9DCF8mipA6EWBAlIaUUpRoFU3oA2gWR0CWkVecQRPHdX2UKGgGaAloD0MIv0S8df4OY0CUhpRSlGgVTegDaBZHQJaRxkrf+CN1fZQoaAZoCWgPQwgiMxe4vOlmQJSGlFKUaBVN6ANoFkdAlpQbSE12q3V9lChoBmgJaA9DCL71Yb1RgU5AlIaUUpRoFUvQaBZHQJaYhxGUfPp1fZQoaAZoCWgPQwj1aRX9IbhoQJSGlFKUaBVN6ANoFkdAlpmvA9FF2HV9lChoBmgJaA9DCIqQup19+mhAlIaUUpRoFU3oA2gWR0CWnazH0btJdX2UKGgGaAloD0MIJc0f01q3ZECUhpRSlGgVTegDaBZHQJahVrWRRuV1fZQoaAZoCWgPQwizeofbIWxgQJSGlFKUaBVN6ANoFkdAlqIG2b5M13V9lChoBmgJaA9DCCJvufqxFmFAlIaUUpRoFU3oA2gWR0CWowTisGPgdX2UKGgGaAloD0MISx3k9WC4TkCUhpRSlGgVS7hoFkdAlqScdxQzlHV9lChoBmgJaA9DCOY8Y1+yX0dAlIaUUpRoFUviaBZHQJal1k5IYm91fZQoaAZoCWgPQwjNPSR8b7RjQJSGlFKUaBVN6ANoFkdAlqcku6ErXnV9lChoBmgJaA9DCPiImBJJw2NAlIaUUpRoFU3oA2gWR0CWqVRaouPFdX2UKGgGaAloD0MIdO0L6IUeZECUhpRSlGgVTegDaBZHQJaqIGmk30h1fZQoaAZoCWgPQwiSk4lbBUdnQJSGlFKUaBVN6ANoFkdAlrRghGH58HV9lChoBmgJaA9DCLVU3o7w6GVAlIaUUpRoFU3oA2gWR0CWtTRBNVR2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d1fee62d71079722eb9d928d80bcccf18b6f7cadb45fd935a278679749a268d
3
+ size 147398
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f360b3069d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f360b306a60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f360b306af0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f360b306b80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f360b306c10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f360b306ca0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f360b306d30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f360b306dc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f360b306e50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f360b306ee0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f360b306f70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f360b30a040>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f360b3071b0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000.0,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673530807910771827,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALrYMr47/q8/ViPxvrETw74xLJO+xoPSvQAAAAAAAAAATflzvcMFPLpyDra6KWoiNh20urvFKdM5AACAPwAAgD9mbyY9rnmyukZ2ALs6Chg3nN8guZxoszkAAIA/AACAP81m7LxIK5W6GnNaOEnuYjNFI9S6SEp8twAAgD8AAIA/04CQPhFMjD/GKbY+7yLZvtwPyj4mKFy8AAAAAAAAAACaqlU9XEtXuqDXZrXC/IWwT9mDOooWojQAAIA/AACAP9rImz3DCWK6KpYxvM5NlzX/t5M5sOsKtQAAgD8AAAAAM78qPeGsibqBEiG488vvsm0WObtl6zo3AACAPwAAgD/N+4c8KcBZulCiezsJuDo11bFbunFokLoAAIA/AACAP5pelzyPrmS6QJd2uYuOZLTe4Qe6eVGQOAAAgD8AAIA/5sFJPeHUiLqEWqi5jz7+NQLKQbvQmGO1AACAPwAAgD8NXpw97AnauSbRwbrmvly104SvOupF4TkAAIA/AACAP3MjnD0f6tC7W4YTvjKlGL7HAj09pjoDPwAAgD8AAIA/AI9lPUjxm7q7Kzg5vSG1NE8m6roTlVS4AACAPwAAgD+ajMw89gR6uqXkAbU5in2wnOanukaGajQAAIA/AACAP5rJvT0pyGO6wCLaO5dpyjd7O9i6vVodNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEOhM2tTWZkCUhpRSlIwBbJRN6AOMAXSUR0CVLJJMxoIwdX2UKGgGaAloD0MIgehJmVSYZkCUhpRSlGgVTegDaBZHQJUt12r4nF51fZQoaAZoCWgPQwhqwvaTsQ1hQJSGlFKUaBVN6ANoFkdAlUG1pKzzE3V9lChoBmgJaA9DCAPOUrIcC2JAlIaUUpRoFU3oA2gWR0CVSlHD7655dX2UKGgGaAloD0MINnSzP1DaSUCUhpRSlGgVS9hoFkdAlU3B0EHMU3V9lChoBmgJaA9DCOOo3EQt3SVAlIaUUpRoFUvdaBZHQJVPKbx3FDR1fZQoaAZoCWgPQwgP7zmwnOpgQJSGlFKUaBVN6ANoFkdAlVT1tCRfW3V9lChoBmgJaA9DCK+YEd4eBktAlIaUUpRoFUvIaBZHQJVabB+F10V1fZQoaAZoCWgPQwjPTDCcaxNkQJSGlFKUaBVN6ANoFkdAlVtxcAzYVnV9lChoBmgJaA9DCH1Yb9QKDWBAlIaUUpRoFU3oA2gWR0CVXUSJ0nw5dX2UKGgGaAloD0MI8s02N6anGcCUhpRSlGgVS+doFkdAlV2suzyBkXV9lChoBmgJaA9DCFddh2pK5GNAlIaUUpRoFU3oA2gWR0CVYvHDaXa8dX2UKGgGaAloD0MIwvwVMlflZUCUhpRSlGgVTegDaBZHQJVlTAP/aQF1fZQoaAZoCWgPQwgVrdwLzJoyQJSGlFKUaBVL1mgWR0CVZopwCKaYdX2UKGgGaAloD0MIGavN/6tGYECUhpRSlGgVTegDaBZHQJVo1fCyhSN1fZQoaAZoCWgPQwi+vWvQl/xgQJSGlFKUaBVN6ANoFkdAlWjwMlTm4nV9lChoBmgJaA9DCIrNx7Uh5GBAlIaUUpRoFU3oA2gWR0CVa+CD28IzdX2UKGgGaAloD0MI1Qj9TL1lZECUhpRSlGgVTegDaBZHQJVtO37UG3Z1fZQoaAZoCWgPQwhhNZawthdjQJSGlFKUaBVN6ANoFkdAlXDb7wazeHV9lChoBmgJaA9DCLd546QwbGBAlIaUUpRoFU3oA2gWR0CVcarDqGDddX2UKGgGaAloD0MItoE7UKeqYkCUhpRSlGgVTegDaBZHQJV0wxYaHbh1fZQoaAZoCWgPQwgj9Z7Kac1fQJSGlFKUaBVN6ANoFkdAlXiYQvpQlHV9lChoBmgJaA9DCLAe963WgUVAlIaUUpRoFUv8aBZHQJWTBi8WbgF1fZQoaAZoCWgPQwjs+ZrlsuRjQJSGlFKUaBVN6ANoFkdAlZayzPa+OHV9lChoBmgJaA9DCBEbLJykH1BAlIaUUpRoFUvpaBZHQJWaDo5ggHN1fZQoaAZoCWgPQwh3TrNAO+xhQJSGlFKUaBVN6ANoFkdAlaHbbHp8nnV9lChoBmgJaA9DCNDukGKAbD1AlIaUUpRoFUvbaBZHQJWlNGNJe3R1fZQoaAZoCWgPQwj03hgCALRhQJSGlFKUaBVN6ANoFkdAlaix2r4nGHV9lChoBmgJaA9DCAkyAiqcNGJAlIaUUpRoFU3oA2gWR0CVqqsdkrf+dX2UKGgGaAloD0MIJCu/DMZ0ZECUhpRSlGgVTegDaBZHQJWrJ9JBgNR1fZQoaAZoCWgPQwgyrOKNzEBjQJSGlFKUaBVN6ANoFkdAlbEYYm9g4XV9lChoBmgJaA9DCJj2zf1V6WJAlIaUUpRoFU3oA2gWR0CVs7u9eyAydX2UKGgGaAloD0MIacnjaXmXYUCUhpRSlGgVTegDaBZHQJW1HDpC8e11fZQoaAZoCWgPQwj+gXLbPlphQJSGlFKUaBVN6ANoFkdAlbepyMkyDnV9lChoBmgJaA9DCMK9Mm/V2UNAlIaUUpRoFUvxaBZHQJW3q3UhFE11fZQoaAZoCWgPQwiDbFm+ruhhQJSGlFKUaBVN6ANoFkdAlbfKjBVMmHV9lChoBmgJaA9DCEesxacAPGVAlIaUUpRoFU3oA2gWR0CVuwRu0kWzdX2UKGgGaAloD0MIceSByCIHZUCUhpRSlGgVTegDaBZHQJW8hqesgdR1fZQoaAZoCWgPQwiFP8ObtT9hQJSGlFKUaBVN6ANoFkdAlcBsBMi8nXV9lChoBmgJaA9DCJ1IMNXMk2JAlIaUUpRoFU3oA2gWR0CVxLX+l0o0dX2UKGgGaAloD0MIsi/ZeLB8UECUhpRSlGgVS7loFkdAleKm+oLofXV9lChoBmgJaA9DCPbrTnee32ZAlIaUUpRoFU3oA2gWR0CV4vy/9Hc2dX2UKGgGaAloD0MIbLWHvVDAW0CUhpRSlGgVTegDaBZHQJXqHoW56MR1fZQoaAZoCWgPQwiASpUo+3pjQJSGlFKUaBVN6ANoFkdAlfILPY4ACHV9lChoBmgJaA9DCPrRcMrckF9AlIaUUpRoFU3oA2gWR0CV9T76pHZsdX2UKGgGaAloD0MI/+cwX176YkCUhpRSlGgVTegDaBZHQJX6TY02tMh1fZQoaAZoCWgPQwhbXU4JCJNiQJSGlFKUaBVN6ANoFkdAlfq8C9ytFXV9lChoBmgJaA9DCEYkCi3rkVFAlIaUUpRoFUu0aBZHQJX9PD8+A3F1fZQoaAZoCWgPQwiUv3tHDUpgQJSGlFKUaBVN6ANoFkdAlgBOt0V8C3V9lChoBmgJaA9DCAVSYtd2oWVAlIaUUpRoFU3oA2gWR0CWAo+n62v0dX2UKGgGaAloD0MIiPccWI4AYECUhpRSlGgVTegDaBZHQJYDxI065oZ1fZQoaAZoCWgPQwgrMjogie5kQJSGlFKUaBVN6ANoFkdAlgYS88La3HV9lChoBmgJaA9DCKJGIcmssWVAlIaUUpRoFU3oA2gWR0CWBhQyyleodX2UKGgGaAloD0MIs82N6QnAYUCUhpRSlGgVTegDaBZHQJYGMQFs54p1fZQoaAZoCWgPQwi1boPa7zlkQJSGlFKUaBVN6ANoFkdAlgj3L7oB73V9lChoBmgJaA9DCE+y1eWUrk9AlIaUUpRoFUu2aBZHQJYJcma6ST11fZQoaAZoCWgPQwhzEd+JWVtcQJSGlFKUaBVN6ANoFkdAlgoZCngpB3V9lChoBmgJaA9DCDONJhdjhmJAlIaUUpRoFU3oA2gWR0CWDR6J66atdX2UKGgGaAloD0MIBi/6CtLsAUCUhpRSlGgVS9xoFkdAlg+H+qBEr3V9lChoBmgJaA9DCHhha7byBjFAlIaUUpRoFUvzaBZHQJYQlivxH5J1fZQoaAZoCWgPQwjjGTT0T4BQQJSGlFKUaBVLrWgWR0CWLK53C9AYdX2UKGgGaAloD0MI78uZ7YpkY0CUhpRSlGgVTegDaBZHQJYtOBGx2St1fZQoaAZoCWgPQwjfiO5Z1/tnQJSGlFKUaBVN6ANoFkdAli2PQ0GeMHV9lChoBmgJaA9DCPG3PUHiDWFAlIaUUpRoFU3oA2gWR0CWNAuXNTtLdX2UKGgGaAloD0MIrkZ2pWVKZUCUhpRSlGgVTegDaBZHQJY+dqCYkVx1fZQoaAZoCWgPQwgLs9DOaRpMQJSGlFKUaBVLtmgWR0CWP1y44Ia+dX2UKGgGaAloD0MIGQCquPHuZkCUhpRSlGgVTegDaBZHQJZD0W1twaR1fZQoaAZoCWgPQwhEboYbcJRjQJSGlFKUaBVN6ANoFkdAlkQ6zzErG3V9lChoBmgJaA9DCNFdEmdFhGRAlIaUUpRoFU3oA2gWR0CWRojEvTPTdX2UKGgGaAloD0MId/NUh9xiZkCUhpRSlGgVTegDaBZHQJZMRHLA57x1fZQoaAZoCWgPQwgo1T4dDwpoQJSGlFKUaBVN6ANoFkdAlk2J/5LytnV9lChoBmgJaA9DCLMmFvgKv2BAlIaUUpRoFU3oA2gWR0CWUDU4aP0adX2UKGgGaAloD0MIamluhTCJY0CUhpRSlGgVTegDaBZHQJZTy8nNPgx1fZQoaAZoCWgPQwhsBU1LLNdhQJSGlFKUaBVN6ANoFkdAllRtNN8E3nV9lChoBmgJaA9DCEsBaf8DOWRAlIaUUpRoFU3oA2gWR0CWVVB+WnjydX2UKGgGaAloD0MIngsjvahdZUCUhpRSlGgVTegDaBZHQJZZMJtzjm11fZQoaAZoCWgPQwiaX80BgiU3QJSGlFKUaBVL92gWR0CWW4Pacqe9dX2UKGgGaAloD0MIzT0kfO/YWkCUhpRSlGgVTegDaBZHQJZcU4ACGN91fZQoaAZoCWgPQwjNdoU+2KphQJSGlFKUaBVN6ANoFkdAlmePapPykXV9lChoBmgJaA9DCL7aUZyj12ZAlIaUUpRoFU3oA2gWR0CWaC09yLhrdX2UKGgGaAloD0MImiLA6V0WY0CUhpRSlGgVTegDaBZHQJZogVO9FnZ1fZQoaAZoCWgPQwgIyJdQwSEtQJSGlFKUaBVL1WgWR0CWh7FnIyTIdX2UKGgGaAloD0MIaTaPw2DeY0CUhpRSlGgVTegDaBZHQJaMPUoa1kV1fZQoaAZoCWgPQwhl/tE3aR5bQJSGlFKUaBVN6ANoFkdAlo0dLpRoAXV9lChoBmgJaA9DCF8mipA6EWBAlIaUUpRoFU3oA2gWR0CWkVecQRPHdX2UKGgGaAloD0MIv0S8df4OY0CUhpRSlGgVTegDaBZHQJaRxkrf+CN1fZQoaAZoCWgPQwgiMxe4vOlmQJSGlFKUaBVN6ANoFkdAlpQbSE12q3V9lChoBmgJaA9DCL71Yb1RgU5AlIaUUpRoFUvQaBZHQJaYhxGUfPp1fZQoaAZoCWgPQwj1aRX9IbhoQJSGlFKUaBVN6ANoFkdAlpmvA9FF2HV9lChoBmgJaA9DCIqQup19+mhAlIaUUpRoFU3oA2gWR0CWnazH0btJdX2UKGgGaAloD0MIJc0f01q3ZECUhpRSlGgVTegDaBZHQJahVrWRRuV1fZQoaAZoCWgPQwizeofbIWxgQJSGlFKUaBVN6ANoFkdAlqIG2b5M13V9lChoBmgJaA9DCCJvufqxFmFAlIaUUpRoFU3oA2gWR0CWowTisGPgdX2UKGgGaAloD0MISx3k9WC4TkCUhpRSlGgVS7hoFkdAlqScdxQzlHV9lChoBmgJaA9DCOY8Y1+yX0dAlIaUUpRoFUviaBZHQJal1k5IYm91fZQoaAZoCWgPQwjNPSR8b7RjQJSGlFKUaBVN6ANoFkdAlqcku6ErXnV9lChoBmgJaA9DCPiImBJJw2NAlIaUUpRoFU3oA2gWR0CWqVRaouPFdX2UKGgGaAloD0MIdO0L6IUeZECUhpRSlGgVTegDaBZHQJaqIGmk30h1fZQoaAZoCWgPQwiSk4lbBUdnQJSGlFKUaBVN6ANoFkdAlrRghGH58HV9lChoBmgJaA9DCLVU3o7w6GVAlIaUUpRoFU3oA2gWR0CWtTRBNVR2dWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6948f4c5d681e8648e2ef533878213c97ed50703e07c7fde0f8c05435c31db15
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:faedd53e234b953917e5303c9c3e4d4592ac893715999f5823230e9d7905e4ac
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (226 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 260.4961675732374, "std_reward": 21.757536531811958, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-12T14:01:48.598386"}