angelinux commited on
Commit
07c8cc5
1 Parent(s): cce565a

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1891.64 +/- 41.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66205e246ba48e74c5c537d7a3dca76765a367570b632dcb34a2d4ab6371c438
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd650be2310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd650be23a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd650be2430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd650be24c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd650be2550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd650be25e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd650be2670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd650be2700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd650be2790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd650be2820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd650be28b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd650be2940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fd650bdc6f0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677683374330794479,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAM5ttD/0WTy/gLJnvmOcsz+grnu/jGs3Pw60g78xcnO/fdaUP1HOnD9dsLA+UThuv4j54j/hz1g/G3DHvTbrYr4wVLu/inZHO/YqZb9UpBg/wLH8PxFlNjwtLkq+fBfCvwXKHz+2wqQ+KlcWPykObL8lFa8/TR18vy7AKL+Wk6I/9zy1v24SFb7p5oO/4BZNvwK9pT8FI4O9ogA9vmkP5b+wEo0/hxTRPXtGCj5dvUi/mLm8v9t9lD0qJSK/L4CJP0md1z8GD8S+rcwivtVCC74Fyh8/tsKkPipXFj8pDmy/6KIYPh32W7+JbNe+8muSP9Mg7L8xTtM/5DxKvnvxM74a+nK/EHu5P3ImEj9KWTs/r1WcP14pJj0FhRg+w8HhPiFgvz8DjhK/Gw1pv4KRmL+bVu4/2oZtQPsThj/sEZi+BcofP7bCpD5l9dm/ntCKP4BN9rzauGO/M6jyvoUfCz/lvZi/TMyDP7spLb9Z4IC9HnZ4v1GOYT8EHvk9YnIYP5uLuT8ZiBw/VqGGPmlNjb9MesA/6PjlvgVNpb+mN0nA/EeyP/6SgECSt0M/hrjDvwXKHz+2wqQ+ZfXZvykObL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADim641AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPpM8vQAAAADv0e+/AAAAALuPEj4AAAAAccfgPwAAAADZWmm8AAAAADlF8j8AAAAAqRX6PQAAAAAShuq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABMCDNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHreTzwAAAAAYcz/vwAAAADfmX48AAAAAKoL7D8AAAAAa+v+PQAAAADZPvM/AAAAAJCuRb0AAAAAvkPZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJdQCTcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAuwPO9AAAAAGdTAcAAAAAAgP06vAAAAAAz0PI/AAAAACWX7D0AAAAA67HsPwAAAAAXMQq+AAAAAEd/2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKEjK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABwrrPQAAAABzj/6/AAAAABNykj0AAAAA61HwPwAAAAB4HhA+AAAAAC+FAEAAAAAASL/1PQAAAADLRO6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ9eQvoNd7iMAWyUTegDjAF0lEdAr21+qtHQQnV9lChoBkdAn8JRHoX9BWgHTegDaAhHQK9udXumaYx1fZQoaAZHQJ0vgE1VHWloB03oA2gIR0Cvb9fDcdo4dX2UKGgGR0CfSZHRkVesaAdN6ANoCEdAr3KowRGtp3V9lChoBkdAn9klEiMYM2gHTegDaAhHQK97q6+36RB1fZQoaAZHQKB8LtHhCMRoB03oA2gIR0CvfKKhtcfOdX2UKGgGR0Cebr9FF2FGaAdN6ANoCEdAr33v93r2QHV9lChoBkdAnwShsuWa+mgHTegDaAhHQK+BY6YE4ed1fZQoaAZHQKBy++TvAoJoB03oA2gIR0Cvjeazu4PPdX2UKGgGR0Cfq5/kvK2baAdN6ANoCEdAr47aXa8HwHV9lChoBkdAn7/MAWBSUGgHTegDaAhHQK+QOK1og3d1fZQoaAZHQKA8q6Kcd5poB03oA2gIR0CvkwlDWsijdX2UKGgGR0Cdci+SKWLQaAdN6ANoCEdAr5wFZ5iVjnV9lChoBkdAnyqzPrv9cmgHTegDaAhHQK+c+LG7z091fZQoaAZHQKBxTo9LYf5oB03oA2gIR0CvnlqhL5ARdX2UKGgGR0CgbLqujh1laAdN6ANoCEdAr6KVHz6JqXV9lChoBkdAoCFrIFNcnmgHTegDaAhHQK+v7SgGr0d1fZQoaAZHQJ8HFiLEUCdoB03oA2gIR0CvsY1/2Cd0dX2UKGgGR0CdHmYplSTAaAdN6ANoCEdAr7PUs4DLbHV9lChoBkdAn3ioLLIPsmgHTegDaAhHQK+34vPkaMt1fZQoaAZHQJ7dVUdaMaVoB03oA2gIR0Cvwid4eLeidX2UKGgGR0CfTNMZP2wnaAdN6ANoCEdAr8O3/giu+3V9lChoBkdAmk99IXj2jGgHTegDaAhHQK/F+R+z+m51fZQoaAZHQKBGbXwLE1loB03oA2gIR0CvyihGx2SudX2UKGgGR0CgkgYXoC+2aAdN6ANoCEdAr9MABq9GqnV9lChoBkdAns8Li2lVLmgHTegDaAhHQK/T7dGAkLR1fZQoaAZHQJ3dQF3Y+StoB03oA2gIR0Cv1UyHdoFndX2UKGgGR0Cg3yPKdQO4aAdN6ANoCEdAr9gPwob4rXV9lChoBkdAoGkfboKUmmgHTegDaAhHQK/ix9UCJXR1fZQoaAZHQKGLNmq5sj5oB03oA2gIR0Cv5GGus90SdX2UKGgGR0ChRx0ihWYGaAdN6ANoCEdAr+at+gDifnV9lChoBkdAoSPScLBsRGgHTegDaAhHQK/qUqbSZ0F1fZQoaAZHQKDmr5WzWwxoB03oA2gIR0Cv8yzcIqsmdX2UKGgGR0CgaGKKHfuUaAdN6ANoCEdAr/Q15le4TnV9lChoBkdAoGMcnuy/sWgHTegDaAhHQK/1kHoouwp1fZQoaAZHQKBNxVtGd7RoB03oA2gIR0Cv+FcdxQzldX2UKGgGR0CewN+jua4MaAdN6ANoCEdAsAH2mDUVjHV9lChoBkdAnddWHxjJ+2gHTegDaAhHQLACwRcu8K51fZQoaAZHQJ1JbVBlcyFoB03oA2gIR0CwA9w+6iCbdX2UKGgGR0CdzZMYuTRqaAdN6ANoCEdAsAU5DIBBA3V9lChoBkdAm8G7rX18LWgHTegDaAhHQLAJlGax5cF1fZQoaAZHQJiG4Ucn3L5oB03oA2gIR0CwCgmnXNC7dX2UKGgGR0Cb17wMYuTSaAdN6ANoCEdAsAq2NT987nV9lChoBkdAmsJIh+vyLGgHTegDaAhHQLAMDDWbw0B1fZQoaAZHQJ34vklu3ttoB03oA2gIR0CwEe1kDp1SdX2UKGgGR0CdhnteD3/QaAdN6ANoCEdAsBK0lPacqnV9lChoBkdAnR0t8qnWKGgHTegDaAhHQLATo2Q4jr11fZQoaAZHQJ4EyWv8qF1oB03oA2gIR0CwFQr9If8udX2UKGgGR0CgTU8fms/6aAdN6ANoCEdAsBlh4X40uXV9lChoBkdAnIuY2n8892gHTegDaAhHQLAZ2Q+2Vml1fZQoaAZHQKBMs9zOopBoB03oA2gIR0CwGoFJQLuydX2UKGgGR0Cg2XiUHIIXaAdN6ANoCEdAsBvn2f02+HV9lChoBkdAoQa1bTtsvmgHTegDaAhHQLAiJlTFVDN1fZQoaAZHQJ6aM+lj3EhoB03oA2gIR0CwIuxOclPadX2UKGgGR0CdQR4h2W6caAdN6ANoCEdAsCOUlQdjonV9lChoBkdAnDKTv7WNFWgHTegDaAhHQLAk8EofCAN1fZQoaAZHQJ6JiWszVMFoB03oA2gIR0CwKUSdBjWkdX2UKGgGR0Cc8mBUrCm/aAdN6ANoCEdAsCm5BfKISHV9lChoBkdAntsPwZwXImgHTegDaAhHQLAqY4ecQRR1fZQoaAZHQJ5XJEJBw/BoB03oA2gIR0CwK8E/r0J4dX2UKGgGR0CfiCZZSvTxaAdN6ANoCEdAsDIxcs189nV9lChoBkdAnZOBqsU7CGgHTegDaAhHQLAyzUI9kjJ1fZQoaAZHQKEDelCTlkpoB03oA2gIR0CwM3YRqXWwdX2UKGgGR0CgURznA6+4aAdN6ANoCEdAsDTWYgJTl3V9lChoBkdAm475Oi35OGgHTegDaAhHQLA5PVrhzeZ1fZQoaAZHQJ1wkuzyBkJoB03oA2gIR0CwOcBJqZc+dX2UKGgGR0Cd33OgxrSFaAdN6ANoCEdAsDp0GRmseXV9lChoBkdAoFUm/SH/LmgHTegDaAhHQLA73FfAsTZ1fZQoaAZHQKBIlJLdvbZoB03oA2gIR0CwQnxQWN3odX2UKGgGR0ChMkrK3d9EaAdN6ANoCEdAsEL+eCkGinV9lChoBkdAoOTNZTyau2gHTegDaAhHQLBDrnKW9lF1fZQoaAZHQKDShLeyiVVoB03oA2gIR0CwRQuws5GSdX2UKGgGR0Cf7DgeA/cGaAdN6ANoCEdAsElbaDf3vnV9lChoBkdAnYtvI0ZWJmgHTegDaAhHQLBJ1N5+pfh1fZQoaAZHQJ/2nKGL1mJoB03oA2gIR0CwSoUUj9n9dX2UKGgGR0CeqLQm/nGLaAdN6ANoCEdAsEvjk5p8GHV9lChoBkdAn6qZxzaK12gHTegDaAhHQLBSeC9RJmN1fZQoaAZHQJ6vOLYPGyZoB03oA2gIR0CwUu+zhP0qdX2UKGgGR0CcvpxGlQ/HaAdN6ANoCEdAsFOeO7xusXV9lChoBkdAnk1yI55qumgHTegDaAhHQLBVDyEtdzJ1fZQoaAZHQKDRUo2n889oB03oA2gIR0CwWXZg9eQddX2UKGgGR0CfHB4kNWluaAdN6ANoCEdAsFnveqJdjXV9lChoBkdAoKTk5wOvuGgHTegDaAhHQLBanqcVgx91fZQoaAZHQJ5wnYcvM8poB03oA2gIR0CwXBcAeaKDdX2UKGgGR0CgniGdqcmTaAdN6ANoCEdAsGJ5ljEvTXV9lChoBkdAnsGVg6U7jmgHTegDaAhHQLBi8m0E5hl1fZQoaAZHQJ6u1Dst03hoB03oA2gIR0CwY51bVz6rdX2UKGgGR0CdAXVX3g1naAdN6ANoCEdAsGUCwNb1RXV9lChoBkdAnEu0Ku0TlGgHTegDaAhHQLBpfZGax5d1fZQoaAZHQJzuSDzyz5ZoB03oA2gIR0CwafdUXHindX2UKGgGR0CfEgg0TDfnaAdN6ANoCEdAsGqmrn1WbXV9lChoBkdAmfcEVvddmmgHTegDaAhHQLBsZFirksB1fZQoaAZHQJ1sKZH/cWVoB03oA2gIR0CwcrVoL5RCdX2UKGgGR0CehBdsBQvYaAdN6ANoCEdAsHM7zshPkHV9lChoBkdAmaL2dNFjNWgHTegDaAhHQLBz7uWrwOR1fZQoaAZHQJ4gJptaY/poB03oA2gIR0CwdV7iIciodX2UKGgGR0CcHdxaxHG0aAdN6ANoCEdAsHnVwQ176nV9lChoBkdAnXFt52QnyGgHTegDaAhHQLB6UxWDHwR1fZQoaAZHQJznuLDQ7cRoB03oA2gIR0Cwev/24/eMdX2UKGgGR0CeZhJnQID6aAdN6ANoCEdAsH0mlTFVDXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51bffa25ec0c046755bdebc3dcf219990bef9532dbb6c7738e13d1b458d1ea75
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c3a14a57db8bca990defa069ebb03f3ee4db633c5cac087109a7b781eaf7d52
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd650be2310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd650be23a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd650be2430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd650be24c0>", "_build": "<function ActorCriticPolicy._build at 0x7fd650be2550>", "forward": "<function ActorCriticPolicy.forward at 0x7fd650be25e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd650be2670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd650be2700>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd650be2790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd650be2820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd650be28b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd650be2940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd650bdc6f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677683374330794479, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAM5ttD/0WTy/gLJnvmOcsz+grnu/jGs3Pw60g78xcnO/fdaUP1HOnD9dsLA+UThuv4j54j/hz1g/G3DHvTbrYr4wVLu/inZHO/YqZb9UpBg/wLH8PxFlNjwtLkq+fBfCvwXKHz+2wqQ+KlcWPykObL8lFa8/TR18vy7AKL+Wk6I/9zy1v24SFb7p5oO/4BZNvwK9pT8FI4O9ogA9vmkP5b+wEo0/hxTRPXtGCj5dvUi/mLm8v9t9lD0qJSK/L4CJP0md1z8GD8S+rcwivtVCC74Fyh8/tsKkPipXFj8pDmy/6KIYPh32W7+JbNe+8muSP9Mg7L8xTtM/5DxKvnvxM74a+nK/EHu5P3ImEj9KWTs/r1WcP14pJj0FhRg+w8HhPiFgvz8DjhK/Gw1pv4KRmL+bVu4/2oZtQPsThj/sEZi+BcofP7bCpD5l9dm/ntCKP4BN9rzauGO/M6jyvoUfCz/lvZi/TMyDP7spLb9Z4IC9HnZ4v1GOYT8EHvk9YnIYP5uLuT8ZiBw/VqGGPmlNjb9MesA/6PjlvgVNpb+mN0nA/EeyP/6SgECSt0M/hrjDvwXKHz+2wqQ+ZfXZvykObL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADim641AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPpM8vQAAAADv0e+/AAAAALuPEj4AAAAAccfgPwAAAADZWmm8AAAAADlF8j8AAAAAqRX6PQAAAAAShuq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABMCDNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHreTzwAAAAAYcz/vwAAAADfmX48AAAAAKoL7D8AAAAAa+v+PQAAAADZPvM/AAAAAJCuRb0AAAAAvkPZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJdQCTcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAuwPO9AAAAAGdTAcAAAAAAgP06vAAAAAAz0PI/AAAAACWX7D0AAAAA67HsPwAAAAAXMQq+AAAAAEd/2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKEjK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABwrrPQAAAABzj/6/AAAAABNykj0AAAAA61HwPwAAAAB4HhA+AAAAAC+FAEAAAAAASL/1PQAAAADLRO6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ9eQvoNd7iMAWyUTegDjAF0lEdAr21+qtHQQnV9lChoBkdAn8JRHoX9BWgHTegDaAhHQK9udXumaYx1fZQoaAZHQJ0vgE1VHWloB03oA2gIR0Cvb9fDcdo4dX2UKGgGR0CfSZHRkVesaAdN6ANoCEdAr3KowRGtp3V9lChoBkdAn9klEiMYM2gHTegDaAhHQK97q6+36RB1fZQoaAZHQKB8LtHhCMRoB03oA2gIR0CvfKKhtcfOdX2UKGgGR0Cebr9FF2FGaAdN6ANoCEdAr33v93r2QHV9lChoBkdAnwShsuWa+mgHTegDaAhHQK+BY6YE4ed1fZQoaAZHQKBy++TvAoJoB03oA2gIR0Cvjeazu4PPdX2UKGgGR0Cfq5/kvK2baAdN6ANoCEdAr47aXa8HwHV9lChoBkdAn7/MAWBSUGgHTegDaAhHQK+QOK1og3d1fZQoaAZHQKA8q6Kcd5poB03oA2gIR0CvkwlDWsijdX2UKGgGR0Cdci+SKWLQaAdN6ANoCEdAr5wFZ5iVjnV9lChoBkdAnyqzPrv9cmgHTegDaAhHQK+c+LG7z091fZQoaAZHQKBxTo9LYf5oB03oA2gIR0CvnlqhL5ARdX2UKGgGR0CgbLqujh1laAdN6ANoCEdAr6KVHz6JqXV9lChoBkdAoCFrIFNcnmgHTegDaAhHQK+v7SgGr0d1fZQoaAZHQJ8HFiLEUCdoB03oA2gIR0CvsY1/2Cd0dX2UKGgGR0CdHmYplSTAaAdN6ANoCEdAr7PUs4DLbHV9lChoBkdAn3ioLLIPsmgHTegDaAhHQK+34vPkaMt1fZQoaAZHQJ7dVUdaMaVoB03oA2gIR0Cvwid4eLeidX2UKGgGR0CfTNMZP2wnaAdN6ANoCEdAr8O3/giu+3V9lChoBkdAmk99IXj2jGgHTegDaAhHQK/F+R+z+m51fZQoaAZHQKBGbXwLE1loB03oA2gIR0CvyihGx2SudX2UKGgGR0CgkgYXoC+2aAdN6ANoCEdAr9MABq9GqnV9lChoBkdAns8Li2lVLmgHTegDaAhHQK/T7dGAkLR1fZQoaAZHQJ3dQF3Y+StoB03oA2gIR0Cv1UyHdoFndX2UKGgGR0Cg3yPKdQO4aAdN6ANoCEdAr9gPwob4rXV9lChoBkdAoGkfboKUmmgHTegDaAhHQK/ix9UCJXR1fZQoaAZHQKGLNmq5sj5oB03oA2gIR0Cv5GGus90SdX2UKGgGR0ChRx0ihWYGaAdN6ANoCEdAr+at+gDifnV9lChoBkdAoSPScLBsRGgHTegDaAhHQK/qUqbSZ0F1fZQoaAZHQKDmr5WzWwxoB03oA2gIR0Cv8yzcIqsmdX2UKGgGR0CgaGKKHfuUaAdN6ANoCEdAr/Q15le4TnV9lChoBkdAoGMcnuy/sWgHTegDaAhHQK/1kHoouwp1fZQoaAZHQKBNxVtGd7RoB03oA2gIR0Cv+FcdxQzldX2UKGgGR0CewN+jua4MaAdN6ANoCEdAsAH2mDUVjHV9lChoBkdAnddWHxjJ+2gHTegDaAhHQLACwRcu8K51fZQoaAZHQJ1JbVBlcyFoB03oA2gIR0CwA9w+6iCbdX2UKGgGR0CdzZMYuTRqaAdN6ANoCEdAsAU5DIBBA3V9lChoBkdAm8G7rX18LWgHTegDaAhHQLAJlGax5cF1fZQoaAZHQJiG4Ucn3L5oB03oA2gIR0CwCgmnXNC7dX2UKGgGR0Cb17wMYuTSaAdN6ANoCEdAsAq2NT987nV9lChoBkdAmsJIh+vyLGgHTegDaAhHQLAMDDWbw0B1fZQoaAZHQJ34vklu3ttoB03oA2gIR0CwEe1kDp1SdX2UKGgGR0CdhnteD3/QaAdN6ANoCEdAsBK0lPacqnV9lChoBkdAnR0t8qnWKGgHTegDaAhHQLATo2Q4jr11fZQoaAZHQJ4EyWv8qF1oB03oA2gIR0CwFQr9If8udX2UKGgGR0CgTU8fms/6aAdN6ANoCEdAsBlh4X40uXV9lChoBkdAnIuY2n8892gHTegDaAhHQLAZ2Q+2Vml1fZQoaAZHQKBMs9zOopBoB03oA2gIR0CwGoFJQLuydX2UKGgGR0Cg2XiUHIIXaAdN6ANoCEdAsBvn2f02+HV9lChoBkdAoQa1bTtsvmgHTegDaAhHQLAiJlTFVDN1fZQoaAZHQJ6aM+lj3EhoB03oA2gIR0CwIuxOclPadX2UKGgGR0CdQR4h2W6caAdN6ANoCEdAsCOUlQdjonV9lChoBkdAnDKTv7WNFWgHTegDaAhHQLAk8EofCAN1fZQoaAZHQJ6JiWszVMFoB03oA2gIR0CwKUSdBjWkdX2UKGgGR0Cc8mBUrCm/aAdN6ANoCEdAsCm5BfKISHV9lChoBkdAntsPwZwXImgHTegDaAhHQLAqY4ecQRR1fZQoaAZHQJ5XJEJBw/BoB03oA2gIR0CwK8E/r0J4dX2UKGgGR0CfiCZZSvTxaAdN6ANoCEdAsDIxcs189nV9lChoBkdAnZOBqsU7CGgHTegDaAhHQLAyzUI9kjJ1fZQoaAZHQKEDelCTlkpoB03oA2gIR0CwM3YRqXWwdX2UKGgGR0CgURznA6+4aAdN6ANoCEdAsDTWYgJTl3V9lChoBkdAm475Oi35OGgHTegDaAhHQLA5PVrhzeZ1fZQoaAZHQJ1wkuzyBkJoB03oA2gIR0CwOcBJqZc+dX2UKGgGR0Cd33OgxrSFaAdN6ANoCEdAsDp0GRmseXV9lChoBkdAoFUm/SH/LmgHTegDaAhHQLA73FfAsTZ1fZQoaAZHQKBIlJLdvbZoB03oA2gIR0CwQnxQWN3odX2UKGgGR0ChMkrK3d9EaAdN6ANoCEdAsEL+eCkGinV9lChoBkdAoOTNZTyau2gHTegDaAhHQLBDrnKW9lF1fZQoaAZHQKDShLeyiVVoB03oA2gIR0CwRQuws5GSdX2UKGgGR0Cf7DgeA/cGaAdN6ANoCEdAsElbaDf3vnV9lChoBkdAnYtvI0ZWJmgHTegDaAhHQLBJ1N5+pfh1fZQoaAZHQJ/2nKGL1mJoB03oA2gIR0CwSoUUj9n9dX2UKGgGR0CeqLQm/nGLaAdN6ANoCEdAsEvjk5p8GHV9lChoBkdAn6qZxzaK12gHTegDaAhHQLBSeC9RJmN1fZQoaAZHQJ6vOLYPGyZoB03oA2gIR0CwUu+zhP0qdX2UKGgGR0CcvpxGlQ/HaAdN6ANoCEdAsFOeO7xusXV9lChoBkdAnk1yI55qumgHTegDaAhHQLBVDyEtdzJ1fZQoaAZHQKDRUo2n889oB03oA2gIR0CwWXZg9eQddX2UKGgGR0CfHB4kNWluaAdN6ANoCEdAsFnveqJdjXV9lChoBkdAoKTk5wOvuGgHTegDaAhHQLBanqcVgx91fZQoaAZHQJ5wnYcvM8poB03oA2gIR0CwXBcAeaKDdX2UKGgGR0CgniGdqcmTaAdN6ANoCEdAsGJ5ljEvTXV9lChoBkdAnsGVg6U7jmgHTegDaAhHQLBi8m0E5hl1fZQoaAZHQJ6u1Dst03hoB03oA2gIR0CwY51bVz6rdX2UKGgGR0CdAXVX3g1naAdN6ANoCEdAsGUCwNb1RXV9lChoBkdAnEu0Ku0TlGgHTegDaAhHQLBpfZGax5d1fZQoaAZHQJzuSDzyz5ZoB03oA2gIR0CwafdUXHindX2UKGgGR0CfEgg0TDfnaAdN6ANoCEdAsGqmrn1WbXV9lChoBkdAmfcEVvddmmgHTegDaAhHQLBsZFirksB1fZQoaAZHQJ1sKZH/cWVoB03oA2gIR0CwcrVoL5RCdX2UKGgGR0CehBdsBQvYaAdN6ANoCEdAsHM7zshPkHV9lChoBkdAmaL2dNFjNWgHTegDaAhHQLBz7uWrwOR1fZQoaAZHQJ4gJptaY/poB03oA2gIR0CwdV7iIciodX2UKGgGR0CcHdxaxHG0aAdN6ANoCEdAsHnVwQ176nV9lChoBkdAnXFt52QnyGgHTegDaAhHQLB6UxWDHwR1fZQoaAZHQJznuLDQ7cRoB03oA2gIR0Cwev/24/eMdX2UKGgGR0CeZhJnQID6aAdN6ANoCEdAsH0mlTFVDXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:235f8cf5a255a72334c6ac95e129cbb8e5040c240269129481ae1150d0616a04
3
+ size 1252102
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1891.6379115616728, "std_reward": 41.139052474120135, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-01T16:42:22.257573"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7f7f578b7d68a106cabc462b79608f6d9faa5ad8c993d50893d4257ab4c16f5
3
+ size 2136