Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +1 -1
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -3.10 +/- 1.38
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 108011
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb38eeaed53a5040e22dc87ca3a71dcdb12832ab44f4713e0cff620e519d6c7c
|
3 |
size 108011
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[ 0.
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[-0.
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8b5925ea60>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f8b592598d0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 1100000,
|
45 |
+
"_total_timesteps": 1100000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1677753896459100930,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAzuLuPgATHT2kkxY/zuLuPgATHT2kkxY/zuLuPgATHT2kkxY/zuLuPgATHT2kkxY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAON1WPepHsj5ZSZ6/P06Ovv8jmj8ZNUC/G6aAPxOfYb1kci4/RNh5vwxGZ772CZ4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADO4u4+ABMdPaSTFj9ZtjY7lTt/utgukDrO4u4+ABMdPaSTFj9ZtjY7lTt/utgukDrO4u4+ABMdPaSTFj9ZtjY7lTt/utgukDrO4u4+ABMdPaSTFj9ZtjY7lTt/utgukDqUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.46657413 0.0383482 0.5881903 ]\n [0.46657413 0.0383482 0.5881903 ]\n [0.46657413 0.0383482 0.5881903 ]\n [0.46657413 0.0383482 0.5881903 ]]",
|
60 |
+
"desired_goal": "[[ 0.05245706 0.3482049 -1.2366134 ]\n [-0.27794072 1.2042235 -0.7508102 ]\n [ 1.0050691 -0.05508335 0.68143296]\n [-0.9759562 -0.22585315 0.30866975]]",
|
61 |
+
"observation": "[[ 0.46657413 0.0383482 0.5881903 0.00278797 -0.00097364 0.00110003]\n [ 0.46657413 0.0383482 0.5881903 0.00278797 -0.00097364 0.00110003]\n [ 0.46657413 0.0383482 0.5881903 0.00278797 -0.00097364 0.00110003]\n [ 0.46657413 0.0383482 0.5881903 0.00278797 -0.00097364 0.00110003]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADlzVvO7AmD3v4IA8KLQEPjwbtD25XWg+H5ipPD0yET4q7o8+DiISPVhrbb25bow+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.02604487 0.07458673 0.01573226]\n [ 0.12959349 0.08794257 0.22692002]\n [ 0.02070242 0.1417932 0.28111392]\n [ 0.03567701 -0.0579637 0.27428225]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR1UTRN3HCcCUhpRSlIwBbJRLMowBdJRHQKwQGPjn3cp1fZQoaAZoCWgPQwgqcLIN3HERwJSGlFKUaBVLMmgWR0CsD8PJaJQ+dX2UKGgGaAloD0MIi6VIvhKoCcCUhpRSlGgVSzJoFkdArA9upQ1rI3V9lChoBmgJaA9DCGwhyEEJsw/AlIaUUpRoFUsyaBZHQKwPDqUNayN1fZQoaAZoCWgPQwgGuvYF9EIBwJSGlFKUaBVLMmgWR0CsERPhZQpGdX2UKGgGaAloD0MIa0QwDi5dBMCUhpRSlGgVSzJoFkdArBC/AuZkTnV9lChoBmgJaA9DCI2Y2ecxygDAlIaUUpRoFUsyaBZHQKwQadc0Ltx1fZQoaAZoCWgPQwgs9SwI5V0DwJSGlFKUaBVLMmgWR0CsEAn8TBZZdX2UKGgGaAloD0MITptxGqKK/7+UhpRSlGgVSzJoFkdArBIQw7DEWXV9lChoBmgJaA9DCJdWQ+IeiwPAlIaUUpRoFUsyaBZHQKwRu32mHgx1fZQoaAZoCWgPQwjUgaynVp/7v5SGlFKUaBVLMmgWR0CsEWZTho/SdX2UKGgGaAloD0MIOslWl1PiBMCUhpRSlGgVSzJoFkdArBEGbLEDQ3V9lChoBmgJaA9DCDsb8s8MAgXAlIaUUpRoFUsyaBZHQKwTBmPHT7V1fZQoaAZoCWgPQwgEH4MVpxoDwJSGlFKUaBVLMmgWR0CsErEsz2vjdX2UKGgGaAloD0MIQni0ccS6AsCUhpRSlGgVSzJoFkdArBJcQ04zanV9lChoBmgJaA9DCJKx2vy/SgjAlIaUUpRoFUsyaBZHQKwR/GT9sJp1fZQoaAZoCWgPQwggt18+WfEPwJSGlFKUaBVLMmgWR0CsE/2bPQfIdX2UKGgGaAloD0MIUvAUcqU+A8CUhpRSlGgVSzJoFkdArBOoSOBDonV9lChoBmgJaA9DCC2xMhr5PAPAlIaUUpRoFUsyaBZHQKwTUz+FUQ11fZQoaAZoCWgPQwhRL/g0J48CwJSGlFKUaBVLMmgWR0CsEvNdAxBWdX2UKGgGaAloD0MIyEEJM20/9L+UhpRSlGgVSzJoFkdArBT0q2Bre3V9lChoBmgJaA9DCLVrQlpj8APAlIaUUpRoFUsyaBZHQKwUn2+wkgR1fZQoaAZoCWgPQwjC2hg74UUEwJSGlFKUaBVLMmgWR0CsFEo065oXdX2UKGgGaAloD0MItahPcoctCcCUhpRSlGgVSzJoFkdArBPqMWGh3HV9lChoBmgJaA9DCIvh6gCIu/2/lIaUUpRoFUsyaBZHQKwV7cPe54J1fZQoaAZoCWgPQwiGrG71nHQEwJSGlFKUaBVLMmgWR0CsFZh/I8yOdX2UKGgGaAloD0MIbr4R3bOOAsCUhpRSlGgVSzJoFkdArBVDKs+3Y3V9lChoBmgJaA9DCMWPMXctIfK/lIaUUpRoFUsyaBZHQKwU40D2alV1fZQoaAZoCWgPQwglyt5Szpf1v5SGlFKUaBVLMmgWR0CsFt81n/T9dX2UKGgGaAloD0MIH7x2acNhAcCUhpRSlGgVSzJoFkdArBaJ4rz5GnV9lChoBmgJaA9DCG7dzVMdMve/lIaUUpRoFUsyaBZHQKwWNJzT4L11fZQoaAZoCWgPQwiYa9ECtA0CwJSGlFKUaBVLMmgWR0CsFdS0BwMqdX2UKGgGaAloD0MIEqW9wRfm/r+UhpRSlGgVSzJoFkdArBfV3Y+SsHV9lChoBmgJaA9DCOvJ/KNvsgHAlIaUUpRoFUsyaBZHQKwXgK+i8Fp1fZQoaAZoCWgPQwhJvhJIiR0PwJSGlFKUaBVLMmgWR0CsFytjCpFTdX2UKGgGaAloD0MIgT6RJ0k3AsCUhpRSlGgVSzJoFkdArBbLtu1nd3V9lChoBmgJaA9DCKVo5V5gVv2/lIaUUpRoFUsyaBZHQKwYwoaUA1h1fZQoaAZoCWgPQwi8P96rVub+v5SGlFKUaBVLMmgWR0CsGG1HWjGldX2UKGgGaAloD0MIoblOIy01CsCUhpRSlGgVSzJoFkdArBgYNI9TxXV9lChoBmgJaA9DCEVoBBvX/wHAlIaUUpRoFUsyaBZHQKwXuFvAGjd1fZQoaAZoCWgPQwh7vma5bFQBwJSGlFKUaBVLMmgWR0CsGbrtu1nedX2UKGgGaAloD0MIkgVM4NZdAsCUhpRSlGgVSzJoFkdArBllsLv1DnV9lChoBmgJaA9DCPQxHxDobALAlIaUUpRoFUsyaBZHQKwZESQo1DV1fZQoaAZoCWgPQwhgyyvX2/YVwJSGlFKUaBVLMmgWR0CsGLH2IwdsdX2UKGgGaAloD0MISmJJufsc+L+UhpRSlGgVSzJoFkdArBrBbD/EO3V9lChoBmgJaA9DCPDC1mzlhQHAlIaUUpRoFUsyaBZHQKwabCu2ZzB1fZQoaAZoCWgPQwgEH4MVp9oDwJSGlFKUaBVLMmgWR0CsGhcZDRdAdX2UKGgGaAloD0MIqySyD7JMBMCUhpRSlGgVSzJoFkdArBm3NxEORXV9lChoBmgJaA9DCPAYHvtZrALAlIaUUpRoFUsyaBZHQKwbvfNRm9R1fZQoaAZoCWgPQwjIYTB/hQwAwJSGlFKUaBVLMmgWR0CsG2jgZTAGdX2UKGgGaAloD0MIpx/URQrFDMCUhpRSlGgVSzJoFkdArBsTuWrwOXV9lChoBmgJaA9DCK3B+6pcqADAlIaUUpRoFUsyaBZHQKwas8uBczJ1fZQoaAZoCWgPQwgqG9ZUFiUJwJSGlFKUaBVLMmgWR0CsHLaqCHymdX2UKGgGaAloD0MI3KFhMeoa+L+UhpRSlGgVSzJoFkdArBxhc5bQkXV9lChoBmgJaA9DCF00ZDxKRQDAlIaUUpRoFUsyaBZHQKwcDCN0eU91fZQoaAZoCWgPQwhcIazGEhb7v5SGlFKUaBVLMmgWR0CsG6w5vLowdX2UKGgGaAloD0MIYvnzbcFyBMCUhpRSlGgVSzJoFkdArB2piNKh+XV9lChoBmgJaA9DCL7Ye/FFWwrAlIaUUpRoFUsyaBZHQKwdVJwsGxF1fZQoaAZoCWgPQwgnofSFkNMDwJSGlFKUaBVLMmgWR0CsHP9si0OWdX2UKGgGaAloD0MIKXef46NF+r+UhpRSlGgVSzJoFkdArByffj0cwXV9lChoBmgJaA9DCEDZlCu8awzAlIaUUpRoFUsyaBZHQKwep+AEt/Z1fZQoaAZoCWgPQwhrR3GOOtoEwJSGlFKUaBVLMmgWR0CsHlLdFfAsdX2UKGgGaAloD0MI7upVZHSABsCUhpRSlGgVSzJoFkdArB39ovi97HV9lChoBmgJaA9DCKRxqN+FDQjAlIaUUpRoFUsyaBZHQKwdncN6PbR1fZQoaAZoCWgPQwgvNUI/U88HwJSGlFKUaBVLMmgWR0CsH5qs2eg+dX2UKGgGaAloD0MIKXXJOEZy/L+UhpRSlGgVSzJoFkdArB9Fet0V8HV9lChoBmgJaA9DCDNTWn9LAPy/lIaUUpRoFUsyaBZHQKwe8Dmr8zh1fZQoaAZoCWgPQwghPrDjvwD2v5SGlFKUaBVLMmgWR0CsHpBS9/SZdX2UKGgGaAloD0MIX+y9+KL9AcCUhpRSlGgVSzJoFkdArCDDkbPyCnV9lChoBmgJaA9DCD0NGCR9mgfAlIaUUpRoFUsyaBZHQKwgbvCuU2V1fZQoaAZoCWgPQwjik04kmAoGwJSGlFKUaBVLMmgWR0CsIBpx//eddX2UKGgGaAloD0MIiXrBpzl5+7+UhpRSlGgVSzJoFkdArB+7HKfWc3V9lChoBmgJaA9DCO/GgsKgjAPAlIaUUpRoFUsyaBZHQKwiaAeaKDV1fZQoaAZoCWgPQwj8471qZUL5v5SGlFKUaBVLMmgWR0CsIhOXNTtLdX2UKGgGaAloD0MIURISaRs/9b+UhpRSlGgVSzJoFkdArCG++Eh7mnV9lChoBmgJaA9DCP36ITZYWAHAlIaUUpRoFUsyaBZHQKwhX7sOXmh1fZQoaAZoCWgPQwh81F+vsKAOwJSGlFKUaBVLMmgWR0CsI/bUwztUdX2UKGgGaAloD0MIiVxwBn+/AcCUhpRSlGgVSzJoFkdArCOiLyc0+HV9lChoBmgJaA9DCFuWr8vwHwnAlIaUUpRoFUsyaBZHQKwjTYL9deJ1fZQoaAZoCWgPQwg6deWzPM8AwJSGlFKUaBVLMmgWR0CsIu5T6zmfdX2UKGgGaAloD0MIT+rL0k4tA8CUhpRSlGgVSzJoFkdArCWN2V3Ux3V9lChoBmgJaA9DCNLhIYyf5gLAlIaUUpRoFUsyaBZHQKwlOWSEDhd1fZQoaAZoCWgPQwjJyFnY0w72v5SGlFKUaBVLMmgWR0CsJOVD8cdYdX2UKGgGaAloD0MIx4FXy53ZA8CUhpRSlGgVSzJoFkdArCSGVAzHj3V9lChoBmgJaA9DCM7drpemKAbAlIaUUpRoFUsyaBZHQKwnOCbMHKR1fZQoaAZoCWgPQwg02T9PAwb8v5SGlFKUaBVLMmgWR0CsJuUBXCCSdX2UKGgGaAloD0MIycovgzEiAMCUhpRSlGgVSzJoFkdArCaQhr30w3V9lChoBmgJaA9DCEuRfCWQUgbAlIaUUpRoFUsyaBZHQKwmMZ4wAVB1fZQoaAZoCWgPQwh8KxIT1JAKwJSGlFKUaBVLMmgWR0CsKQJrLyMDdX2UKGgGaAloD0MIteGwNPCjCcCUhpRSlGgVSzJoFkdArCiuQwK0D3V9lChoBmgJaA9DCFPovMYuEfm/lIaUUpRoFUsyaBZHQKwoWaYNRWN1fZQoaAZoCWgPQwiRYoBEEygBwJSGlFKUaBVLMmgWR0CsJ/rRKHwgdX2UKGgGaAloD0MIvVXXoZoCFcCUhpRSlGgVSzJoFkdArCq1ocrAg3V9lChoBmgJaA9DCFjIXBlUm/6/lIaUUpRoFUsyaBZHQKwqYQwK0D51fZQoaAZoCWgPQwhQx2MGKkMHwJSGlFKUaBVLMmgWR0CsKgzHbRF7dX2UKGgGaAloD0MI4IPXLm0YBcCUhpRSlGgVSzJoFkdArCmtlum78XV9lChoBmgJaA9DCNkG7kCd8vi/lIaUUpRoFUsyaBZHQKwr88QI2O11fZQoaAZoCWgPQwgWa7jIPd38v5SGlFKUaBVLMmgWR0CsK56YNRWMdX2UKGgGaAloD0MIRG0bRkGw/7+UhpRSlGgVSzJoFkdArCtJStNi6XV9lChoBmgJaA9DCEM6PITxswzAlIaUUpRoFUsyaBZHQKwq6ZF5Oah1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 55000,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2853b3cd064f7a09782ac9c9fef6e4132e794439ce8598291c033895d07c820c
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6877659fe4f5a7b2c99b4e2e5472656669ac06bb65f962fc49c07d4fd2d617d3
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f095c1f0af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f095c1ec8d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677744324805659652, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjZvGPuYEFTzhvwM/jZvGPuYEFTzhvwM/jZvGPuYEFTzhvwM/jZvGPuYEFTzhvwM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATHUtP8QRi7+L168+KbKDvRUiwz9nF9U/5WW5PlgZ2j/6dJ29JZumP2KoIb+7zaQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACNm8Y+5gQVPOG/Az8y4Tk8USzlu2LNuTyNm8Y+5gQVPOG/Az8y4Tk8USzlu2LNuTyNm8Y+5gQVPOG/Az8y4Tk8USzlu2LNuTyNm8Y+5gQVPOG/Az8y4Tk8USzlu2LNuTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3879055 0.00909541 0.5146466 ]\n [0.3879055 0.00909541 0.5146466 ]\n [0.3879055 0.00909541 0.5146466 ]\n [0.3879055 0.00909541 0.5146466 ]]", "desired_goal": "[[ 0.67757106 -1.0864797 0.34344134]\n [-0.06430466 1.5244776 1.6647767 ]\n [ 0.36210552 1.7038984 -0.07688327]\n [ 1.3016096 -0.63147557 1.2875284 ]]", "observation": "[[ 0.3879055 0.00909541 0.5146466 0.01134519 -0.00699381 0.02268094]\n [ 0.3879055 0.00909541 0.5146466 0.01134519 -0.00699381 0.02268094]\n [ 0.3879055 0.00909541 0.5146466 0.01134519 -0.00699381 0.02268094]\n [ 0.3879055 0.00909541 0.5146466 0.01134519 -0.00699381 0.02268094]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAis3Uvbn4GD5YQSs+3G0RviOy5T0Q3rs9UC0Kvar29T1g6oI+QC2pPeQ6hLx2XI49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10390766 0.1493863 0.16724145]\n [-0.14202064 0.11215618 0.09173214]\n [-0.03373462 0.12009938 0.2556944 ]\n [ 0.08260584 -0.01614136 0.06951229]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6WSp9X6DCMCUhpRSlIwBbJRLMowBdJRHQKmX5DSgGr11fZQoaAZoCWgPQwiZDp2edyMPwJSGlFKUaBVLMmgWR0Cpl4akyk9EdX2UKGgGaAloD0MIq1lnfF/8E8CUhpRSlGgVSzJoFkdAqZcpRyfcvnV9lChoBmgJaA9DCOjdWFAY1BPAlIaUUpRoFUsyaBZHQKmW0UuctoV1fZQoaAZoCWgPQwhDVOHP8KYBwJSGlFKUaBVLMmgWR0CpmZ/c32mIdX2UKGgGaAloD0MIBW7dzVM9EMCUhpRSlGgVSzJoFkdAqZlDVhCtzXV9lChoBmgJaA9DCH2x9+KLphDAlIaUUpRoFUsyaBZHQKmY5vKlpGp1fZQoaAZoCWgPQwj5S4v6JPcUwJSGlFKUaBVLMmgWR0CpmI/dhy80dX2UKGgGaAloD0MIf73CgvsREMCUhpRSlGgVSzJoFkdAqZuM2itaIXV9lChoBmgJaA9DCN481SE3UxHAlIaUUpRoFUsyaBZHQKmbMFINEw51fZQoaAZoCWgPQwj/WfPjL+0ewJSGlFKUaBVLMmgWR0CpmtQLVnVYdX2UKGgGaAloD0MIbRyxFp8yFsCUhpRSlGgVSzJoFkdAqZp9EAo5P3V9lChoBmgJaA9DCHQn2H+d+wrAlIaUUpRoFUsyaBZHQKmdfQJokAx1fZQoaAZoCWgPQwhaZaa0/hYQwJSGlFKUaBVLMmgWR0CpnSAGjbi7dX2UKGgGaAloD0MIstR6v9HODcCUhpRSlGgVSzJoFkdAqZzD0WdmQXV9lChoBmgJaA9DCASQ2sTJvQ3AlIaUUpRoFUsyaBZHQKmcbQC0WuZ1fZQoaAZoCWgPQwgzGvm84lkRwJSGlFKUaBVLMmgWR0Cpn3kFnqVydX2UKGgGaAloD0MIYKsEi8O5BcCUhpRSlGgVSzJoFkdAqZ8coUi6hHV9lChoBmgJaA9DCAGKkSVzbA3AlIaUUpRoFUsyaBZHQKmewGO+7Dl1fZQoaAZoCWgPQwi1/pYA/DMLwJSGlFKUaBVLMmgWR0Cpnmliz9jxdX2UKGgGaAloD0MICFkWTPwhEsCUhpRSlGgVSzJoFkdAqaFyOLiuMnV9lChoBmgJaA9DCJ/L1CR44wXAlIaUUpRoFUsyaBZHQKmhFXOGCZp1fZQoaAZoCWgPQwjT3AphNVYGwJSGlFKUaBVLMmgWR0CpoLkmhM8HdX2UKGgGaAloD0MIwJMWLqtwCMCUhpRSlGgVSzJoFkdAqaBiSmqHXXV9lChoBmgJaA9DCHN/9bhvJRbAlIaUUpRoFUsyaBZHQKmjcNb1RLt1fZQoaAZoCWgPQwimgR/VsN8GwJSGlFKUaBVLMmgWR0CpoxW3Sa3JdX2UKGgGaAloD0MIdQZGXtYEBcCUhpRSlGgVSzJoFkdAqaK5s/IKdHV9lChoBmgJaA9DCLQB2IAI0QzAlIaUUpRoFUsyaBZHQKmiYwD/2kB1fZQoaAZoCWgPQwgvMgG/RhIDwJSGlFKUaBVLMmgWR0CppK5qubI+dX2UKGgGaAloD0MIMo6R7BHqDsCUhpRSlGgVSzJoFkdAqaRRBE8aGnV9lChoBmgJaA9DCEq05PG0HA7AlIaUUpRoFUsyaBZHQKmj861b7j11fZQoaAZoCWgPQwh0YaQXtfsOwJSGlFKUaBVLMmgWR0Cpo5uoHcDbdX2UKGgGaAloD0MI4QuTqYJRDMCUhpRSlGgVSzJoFkdAqaXL2JzkqHV9lChoBmgJaA9DCANAFTduARvAlIaUUpRoFUsyaBZHQKmlbjXFtKt1fZQoaAZoCWgPQwgy6ITQQXcRwJSGlFKUaBVLMmgWR0CppRDbi6xxdX2UKGgGaAloD0MI7Uj1nV90A8CUhpRSlGgVSzJoFkdAqaS4rJ8v3HV9lChoBmgJaA9DCLvSMlLvCQ/AlIaUUpRoFUsyaBZHQKmm7T8YQ8R1fZQoaAZoCWgPQwitaklHOQgSwJSGlFKUaBVLMmgWR0Cppo+X7cfvdX2UKGgGaAloD0MIHHqLh/c8GMCUhpRSlGgVSzJoFkdAqaYyP2f03HV9lChoBmgJaA9DCNzykZT0YBPAlIaUUpRoFUsyaBZHQKml2hSLqD91fZQoaAZoCWgPQwi/79+8OJEMwJSGlFKUaBVLMmgWR0CpqApazNUwdX2UKGgGaAloD0MIARO4dTePCcCUhpRSlGgVSzJoFkdAqaestRNypHV9lChoBmgJaA9DCHuCxHb3cBbAlIaUUpRoFUsyaBZHQKmnT7Kq4pd1fZQoaAZoCWgPQwjMJOoFnyYLwJSGlFKUaBVLMmgWR0CppvfICEHudX2UKGgGaAloD0MIVwkWhzM/CsCUhpRSlGgVSzJoFkdAqakyjQAuI3V9lChoBmgJaA9DCDV8C+vGOwnAlIaUUpRoFUsyaBZHQKmo1Ta0x/N1fZQoaAZoCWgPQwj4xhAAHFsJwJSGlFKUaBVLMmgWR0CpqHfzjFQ3dX2UKGgGaAloD0MI/plBfGBnDcCUhpRSlGgVSzJoFkdAqaggNXo1UHV9lChoBmgJaA9DCD6yuWqeUxPAlIaUUpRoFUsyaBZHQKmqX3pOerd1fZQoaAZoCWgPQwjUKY9uhAUPwJSGlFKUaBVLMmgWR0CpqgH/95yEdX2UKGgGaAloD0MIaEEo7+MoB8CUhpRSlGgVSzJoFkdAqamkhJRO13V9lChoBmgJaA9DCAVrnE1HIAnAlIaUUpRoFUsyaBZHQKmpTH3Dej51fZQoaAZoCWgPQwh3FOeoowMFwJSGlFKUaBVLMmgWR0Cpq4K3mV7hdX2UKGgGaAloD0MI8UbmkT+YAcCUhpRSlGgVSzJoFkdAqaslTDO1OXV9lChoBmgJaA9DCFDG+DB7SRbAlIaUUpRoFUsyaBZHQKmqx/OMVDd1fZQoaAZoCWgPQwj9hLNby+QQwJSGlFKUaBVLMmgWR0Cpqm/ub7TEdX2UKGgGaAloD0MIsFjDRe6pCsCUhpRSlGgVSzJoFkdAqaysLv1DjXV9lChoBmgJaA9DCELSp1X0xwPAlIaUUpRoFUsyaBZHQKmsToN/e+F1fZQoaAZoCWgPQwjRBmADIuQGwJSGlFKUaBVLMmgWR0Cpq/EdV/+bdX2UKGgGaAloD0MICMvY0M0eBsCUhpRSlGgVSzJoFkdAqauZCngpB3V9lChoBmgJaA9DCGLYYUz6KxfAlIaUUpRoFUsyaBZHQKmtygSOBDp1fZQoaAZoCWgPQwiEDrqEQ78WwJSGlFKUaBVLMmgWR0CprWx33YcvdX2UKGgGaAloD0MII4RHG0cMCsCUhpRSlGgVSzJoFkdAqa0PBvaURnV9lChoBmgJaA9DCN2adFsilwXAlIaUUpRoFUsyaBZHQKmstvP1L8J1fZQoaAZoCWgPQwjLETKQZ7cPwJSGlFKUaBVLMmgWR0Cprw+xGDtgdX2UKGgGaAloD0MI8djPYimS/7+UhpRSlGgVSzJoFkdAqa6yAz544nV9lChoBmgJaA9DCGFT51HxzxXAlIaUUpRoFUsyaBZHQKmuVM8ox591fZQoaAZoCWgPQwjIfhZLkVwGwJSGlFKUaBVLMmgWR0Cprf0MG5c1dX2UKGgGaAloD0MIkIe+u5VFAMCUhpRSlGgVSzJoFkdAqbA0wDeTFHV9lChoBmgJaA9DCG2MnfAS3ArAlIaUUpRoFUsyaBZHQKmv114gRsd1fZQoaAZoCWgPQwgXEcXkDXAGwJSGlFKUaBVLMmgWR0Cpr3oE0SAZdX2UKGgGaAloD0MI1CgkmdWrEsCUhpRSlGgVSzJoFkdAqa8iLIgeR3V9lChoBmgJaA9DCKWfcHZrWQPAlIaUUpRoFUsyaBZHQKmxVs9B8hN1fZQoaAZoCWgPQwg8okJ1c5EFwJSGlFKUaBVLMmgWR0CpsPkOAiFCdX2UKGgGaAloD0MI78ouGFzTDcCUhpRSlGgVSzJoFkdAqbCbxZuAJHV9lChoBmgJaA9DCOwYV1wctQvAlIaUUpRoFUsyaBZHQKmwQ8p1A7h1fZQoaAZoCWgPQwhzLVqAtvUCwJSGlFKUaBVLMmgWR0Cpsnpx3mmtdX2UKGgGaAloD0MINgUyO4vuGMCUhpRSlGgVSzJoFkdAqbIc7IT4+XV9lChoBmgJaA9DCIpXWdsUXxvAlIaUUpRoFUsyaBZHQKmxv71Iy0t1fZQoaAZoCWgPQwjv5T45ChAHwJSGlFKUaBVLMmgWR0CpsWfXGwRodX2UKGgGaAloD0MI8Pj2rkFfCcCUhpRSlGgVSzJoFkdAqbOclJHy3HV9lChoBmgJaA9DCF7yP/m7FwjAlIaUUpRoFUsyaBZHQKmzPvJiiIt1fZQoaAZoCWgPQwgKgVziyAMIwJSGlFKUaBVLMmgWR0CpsuG16Vt5dX2UKGgGaAloD0MIzcth9x3DEMCUhpRSlGgVSzJoFkdAqbKJ2MbWE3V9lChoBmgJaA9DCFgdOdIZ2APAlIaUUpRoFUsyaBZHQKm0xc7hegN1fZQoaAZoCWgPQwiLOJ1kq8sSwJSGlFKUaBVLMmgWR0CptGhPCVKPdX2UKGgGaAloD0MI5pDUQslECMCUhpRSlGgVSzJoFkdAqbQLdi2Dx3V9lChoBmgJaA9DCGEzwAXZkgbAlIaUUpRoFUsyaBZHQKmzs3GXHBF1fZQoaAZoCWgPQwjFc7aA0FoGwJSGlFKUaBVLMmgWR0CpteHEl3QldX2UKGgGaAloD0MIgSBAho79B8CUhpRSlGgVSzJoFkdAqbWEOLBKtnV9lChoBmgJaA9DCFcHQNzVCwLAlIaUUpRoFUsyaBZHQKm1Jvc8DCB1fZQoaAZoCWgPQwhRLSKKyfsMwJSGlFKUaBVLMmgWR0CptM8QAdXDdX2UKGgGaAloD0MIj/tW68SFCcCUhpRSlGgVSzJoFkdAqbcCUVzp5nV9lChoBmgJaA9DCJFDxM2p1BfAlIaUUpRoFUsyaBZHQKm2pLV4HHF1fZQoaAZoCWgPQwihndMs0M4SwJSGlFKUaBVLMmgWR0CptkeDnNgSdX2UKGgGaAloD0MImiUBamp5BMCUhpRSlGgVSzJoFkdAqbXvZM+NcXV9lChoBmgJaA9DCMhgxanWMhPAlIaUUpRoFUsyaBZHQKm4nllsguB1fZQoaAZoCWgPQwiu1onL8aoFwJSGlFKUaBVLMmgWR0CpuEGTTvy9dX2UKGgGaAloD0MIKsQj8fLUDcCUhpRSlGgVSzJoFkdAqbflWbPQfXV9lChoBmgJaA9DCF6ezhWlBAPAlIaUUpRoFUsyaBZHQKm3jg/keZJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8b5925ea60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8b592598d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1100000, "_total_timesteps": 1100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677753896459100930, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAzuLuPgATHT2kkxY/zuLuPgATHT2kkxY/zuLuPgATHT2kkxY/zuLuPgATHT2kkxY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAON1WPepHsj5ZSZ6/P06Ovv8jmj8ZNUC/G6aAPxOfYb1kci4/RNh5vwxGZ772CZ4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADO4u4+ABMdPaSTFj9ZtjY7lTt/utgukDrO4u4+ABMdPaSTFj9ZtjY7lTt/utgukDrO4u4+ABMdPaSTFj9ZtjY7lTt/utgukDrO4u4+ABMdPaSTFj9ZtjY7lTt/utgukDqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.46657413 0.0383482 0.5881903 ]\n [0.46657413 0.0383482 0.5881903 ]\n [0.46657413 0.0383482 0.5881903 ]\n [0.46657413 0.0383482 0.5881903 ]]", "desired_goal": "[[ 0.05245706 0.3482049 -1.2366134 ]\n [-0.27794072 1.2042235 -0.7508102 ]\n [ 1.0050691 -0.05508335 0.68143296]\n [-0.9759562 -0.22585315 0.30866975]]", "observation": "[[ 0.46657413 0.0383482 0.5881903 0.00278797 -0.00097364 0.00110003]\n [ 0.46657413 0.0383482 0.5881903 0.00278797 -0.00097364 0.00110003]\n [ 0.46657413 0.0383482 0.5881903 0.00278797 -0.00097364 0.00110003]\n [ 0.46657413 0.0383482 0.5881903 0.00278797 -0.00097364 0.00110003]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADlzVvO7AmD3v4IA8KLQEPjwbtD25XWg+H5ipPD0yET4q7o8+DiISPVhrbb25bow+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02604487 0.07458673 0.01573226]\n [ 0.12959349 0.08794257 0.22692002]\n [ 0.02070242 0.1417932 0.28111392]\n [ 0.03567701 -0.0579637 0.27428225]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR1UTRN3HCcCUhpRSlIwBbJRLMowBdJRHQKwQGPjn3cp1fZQoaAZoCWgPQwgqcLIN3HERwJSGlFKUaBVLMmgWR0CsD8PJaJQ+dX2UKGgGaAloD0MIi6VIvhKoCcCUhpRSlGgVSzJoFkdArA9upQ1rI3V9lChoBmgJaA9DCGwhyEEJsw/AlIaUUpRoFUsyaBZHQKwPDqUNayN1fZQoaAZoCWgPQwgGuvYF9EIBwJSGlFKUaBVLMmgWR0CsERPhZQpGdX2UKGgGaAloD0MIa0QwDi5dBMCUhpRSlGgVSzJoFkdArBC/AuZkTnV9lChoBmgJaA9DCI2Y2ecxygDAlIaUUpRoFUsyaBZHQKwQadc0Ltx1fZQoaAZoCWgPQwgs9SwI5V0DwJSGlFKUaBVLMmgWR0CsEAn8TBZZdX2UKGgGaAloD0MITptxGqKK/7+UhpRSlGgVSzJoFkdArBIQw7DEWXV9lChoBmgJaA9DCJdWQ+IeiwPAlIaUUpRoFUsyaBZHQKwRu32mHgx1fZQoaAZoCWgPQwjUgaynVp/7v5SGlFKUaBVLMmgWR0CsEWZTho/SdX2UKGgGaAloD0MIOslWl1PiBMCUhpRSlGgVSzJoFkdArBEGbLEDQ3V9lChoBmgJaA9DCDsb8s8MAgXAlIaUUpRoFUsyaBZHQKwTBmPHT7V1fZQoaAZoCWgPQwgEH4MVpxoDwJSGlFKUaBVLMmgWR0CsErEsz2vjdX2UKGgGaAloD0MIQni0ccS6AsCUhpRSlGgVSzJoFkdArBJcQ04zanV9lChoBmgJaA9DCJKx2vy/SgjAlIaUUpRoFUsyaBZHQKwR/GT9sJp1fZQoaAZoCWgPQwggt18+WfEPwJSGlFKUaBVLMmgWR0CsE/2bPQfIdX2UKGgGaAloD0MIUvAUcqU+A8CUhpRSlGgVSzJoFkdArBOoSOBDonV9lChoBmgJaA9DCC2xMhr5PAPAlIaUUpRoFUsyaBZHQKwTUz+FUQ11fZQoaAZoCWgPQwhRL/g0J48CwJSGlFKUaBVLMmgWR0CsEvNdAxBWdX2UKGgGaAloD0MIyEEJM20/9L+UhpRSlGgVSzJoFkdArBT0q2Bre3V9lChoBmgJaA9DCLVrQlpj8APAlIaUUpRoFUsyaBZHQKwUn2+wkgR1fZQoaAZoCWgPQwjC2hg74UUEwJSGlFKUaBVLMmgWR0CsFEo065oXdX2UKGgGaAloD0MItahPcoctCcCUhpRSlGgVSzJoFkdArBPqMWGh3HV9lChoBmgJaA9DCIvh6gCIu/2/lIaUUpRoFUsyaBZHQKwV7cPe54J1fZQoaAZoCWgPQwiGrG71nHQEwJSGlFKUaBVLMmgWR0CsFZh/I8yOdX2UKGgGaAloD0MIbr4R3bOOAsCUhpRSlGgVSzJoFkdArBVDKs+3Y3V9lChoBmgJaA9DCMWPMXctIfK/lIaUUpRoFUsyaBZHQKwU40D2alV1fZQoaAZoCWgPQwglyt5Szpf1v5SGlFKUaBVLMmgWR0CsFt81n/T9dX2UKGgGaAloD0MIH7x2acNhAcCUhpRSlGgVSzJoFkdArBaJ4rz5GnV9lChoBmgJaA9DCG7dzVMdMve/lIaUUpRoFUsyaBZHQKwWNJzT4L11fZQoaAZoCWgPQwiYa9ECtA0CwJSGlFKUaBVLMmgWR0CsFdS0BwMqdX2UKGgGaAloD0MIEqW9wRfm/r+UhpRSlGgVSzJoFkdArBfV3Y+SsHV9lChoBmgJaA9DCOvJ/KNvsgHAlIaUUpRoFUsyaBZHQKwXgK+i8Fp1fZQoaAZoCWgPQwhJvhJIiR0PwJSGlFKUaBVLMmgWR0CsFytjCpFTdX2UKGgGaAloD0MIgT6RJ0k3AsCUhpRSlGgVSzJoFkdArBbLtu1nd3V9lChoBmgJaA9DCKVo5V5gVv2/lIaUUpRoFUsyaBZHQKwYwoaUA1h1fZQoaAZoCWgPQwi8P96rVub+v5SGlFKUaBVLMmgWR0CsGG1HWjGldX2UKGgGaAloD0MIoblOIy01CsCUhpRSlGgVSzJoFkdArBgYNI9TxXV9lChoBmgJaA9DCEVoBBvX/wHAlIaUUpRoFUsyaBZHQKwXuFvAGjd1fZQoaAZoCWgPQwh7vma5bFQBwJSGlFKUaBVLMmgWR0CsGbrtu1nedX2UKGgGaAloD0MIkgVM4NZdAsCUhpRSlGgVSzJoFkdArBllsLv1DnV9lChoBmgJaA9DCPQxHxDobALAlIaUUpRoFUsyaBZHQKwZESQo1DV1fZQoaAZoCWgPQwhgyyvX2/YVwJSGlFKUaBVLMmgWR0CsGLH2IwdsdX2UKGgGaAloD0MISmJJufsc+L+UhpRSlGgVSzJoFkdArBrBbD/EO3V9lChoBmgJaA9DCPDC1mzlhQHAlIaUUpRoFUsyaBZHQKwabCu2ZzB1fZQoaAZoCWgPQwgEH4MVp9oDwJSGlFKUaBVLMmgWR0CsGhcZDRdAdX2UKGgGaAloD0MIqySyD7JMBMCUhpRSlGgVSzJoFkdArBm3NxEORXV9lChoBmgJaA9DCPAYHvtZrALAlIaUUpRoFUsyaBZHQKwbvfNRm9R1fZQoaAZoCWgPQwjIYTB/hQwAwJSGlFKUaBVLMmgWR0CsG2jgZTAGdX2UKGgGaAloD0MIpx/URQrFDMCUhpRSlGgVSzJoFkdArBsTuWrwOXV9lChoBmgJaA9DCK3B+6pcqADAlIaUUpRoFUsyaBZHQKwas8uBczJ1fZQoaAZoCWgPQwgqG9ZUFiUJwJSGlFKUaBVLMmgWR0CsHLaqCHymdX2UKGgGaAloD0MI3KFhMeoa+L+UhpRSlGgVSzJoFkdArBxhc5bQkXV9lChoBmgJaA9DCF00ZDxKRQDAlIaUUpRoFUsyaBZHQKwcDCN0eU91fZQoaAZoCWgPQwhcIazGEhb7v5SGlFKUaBVLMmgWR0CsG6w5vLowdX2UKGgGaAloD0MIYvnzbcFyBMCUhpRSlGgVSzJoFkdArB2piNKh+XV9lChoBmgJaA9DCL7Ye/FFWwrAlIaUUpRoFUsyaBZHQKwdVJwsGxF1fZQoaAZoCWgPQwgnofSFkNMDwJSGlFKUaBVLMmgWR0CsHP9si0OWdX2UKGgGaAloD0MIKXef46NF+r+UhpRSlGgVSzJoFkdArByffj0cwXV9lChoBmgJaA9DCEDZlCu8awzAlIaUUpRoFUsyaBZHQKwep+AEt/Z1fZQoaAZoCWgPQwhrR3GOOtoEwJSGlFKUaBVLMmgWR0CsHlLdFfAsdX2UKGgGaAloD0MI7upVZHSABsCUhpRSlGgVSzJoFkdArB39ovi97HV9lChoBmgJaA9DCKRxqN+FDQjAlIaUUpRoFUsyaBZHQKwdncN6PbR1fZQoaAZoCWgPQwgvNUI/U88HwJSGlFKUaBVLMmgWR0CsH5qs2eg+dX2UKGgGaAloD0MIKXXJOEZy/L+UhpRSlGgVSzJoFkdArB9Fet0V8HV9lChoBmgJaA9DCDNTWn9LAPy/lIaUUpRoFUsyaBZHQKwe8Dmr8zh1fZQoaAZoCWgPQwghPrDjvwD2v5SGlFKUaBVLMmgWR0CsHpBS9/SZdX2UKGgGaAloD0MIX+y9+KL9AcCUhpRSlGgVSzJoFkdArCDDkbPyCnV9lChoBmgJaA9DCD0NGCR9mgfAlIaUUpRoFUsyaBZHQKwgbvCuU2V1fZQoaAZoCWgPQwjik04kmAoGwJSGlFKUaBVLMmgWR0CsIBpx//eddX2UKGgGaAloD0MIiXrBpzl5+7+UhpRSlGgVSzJoFkdArB+7HKfWc3V9lChoBmgJaA9DCO/GgsKgjAPAlIaUUpRoFUsyaBZHQKwiaAeaKDV1fZQoaAZoCWgPQwj8471qZUL5v5SGlFKUaBVLMmgWR0CsIhOXNTtLdX2UKGgGaAloD0MIURISaRs/9b+UhpRSlGgVSzJoFkdArCG++Eh7mnV9lChoBmgJaA9DCP36ITZYWAHAlIaUUpRoFUsyaBZHQKwhX7sOXmh1fZQoaAZoCWgPQwh81F+vsKAOwJSGlFKUaBVLMmgWR0CsI/bUwztUdX2UKGgGaAloD0MIiVxwBn+/AcCUhpRSlGgVSzJoFkdArCOiLyc0+HV9lChoBmgJaA9DCFuWr8vwHwnAlIaUUpRoFUsyaBZHQKwjTYL9deJ1fZQoaAZoCWgPQwg6deWzPM8AwJSGlFKUaBVLMmgWR0CsIu5T6zmfdX2UKGgGaAloD0MIT+rL0k4tA8CUhpRSlGgVSzJoFkdArCWN2V3Ux3V9lChoBmgJaA9DCNLhIYyf5gLAlIaUUpRoFUsyaBZHQKwlOWSEDhd1fZQoaAZoCWgPQwjJyFnY0w72v5SGlFKUaBVLMmgWR0CsJOVD8cdYdX2UKGgGaAloD0MIx4FXy53ZA8CUhpRSlGgVSzJoFkdArCSGVAzHj3V9lChoBmgJaA9DCM7drpemKAbAlIaUUpRoFUsyaBZHQKwnOCbMHKR1fZQoaAZoCWgPQwg02T9PAwb8v5SGlFKUaBVLMmgWR0CsJuUBXCCSdX2UKGgGaAloD0MIycovgzEiAMCUhpRSlGgVSzJoFkdArCaQhr30w3V9lChoBmgJaA9DCEuRfCWQUgbAlIaUUpRoFUsyaBZHQKwmMZ4wAVB1fZQoaAZoCWgPQwh8KxIT1JAKwJSGlFKUaBVLMmgWR0CsKQJrLyMDdX2UKGgGaAloD0MIteGwNPCjCcCUhpRSlGgVSzJoFkdArCiuQwK0D3V9lChoBmgJaA9DCFPovMYuEfm/lIaUUpRoFUsyaBZHQKwoWaYNRWN1fZQoaAZoCWgPQwiRYoBEEygBwJSGlFKUaBVLMmgWR0CsJ/rRKHwgdX2UKGgGaAloD0MIvVXXoZoCFcCUhpRSlGgVSzJoFkdArCq1ocrAg3V9lChoBmgJaA9DCFjIXBlUm/6/lIaUUpRoFUsyaBZHQKwqYQwK0D51fZQoaAZoCWgPQwhQx2MGKkMHwJSGlFKUaBVLMmgWR0CsKgzHbRF7dX2UKGgGaAloD0MI4IPXLm0YBcCUhpRSlGgVSzJoFkdArCmtlum78XV9lChoBmgJaA9DCNkG7kCd8vi/lIaUUpRoFUsyaBZHQKwr88QI2O11fZQoaAZoCWgPQwgWa7jIPd38v5SGlFKUaBVLMmgWR0CsK56YNRWMdX2UKGgGaAloD0MIRG0bRkGw/7+UhpRSlGgVSzJoFkdArCtJStNi6XV9lChoBmgJaA9DCEM6PITxswzAlIaUUpRoFUsyaBZHQKwq6ZF5Oah1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 55000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -3.1024135683663188, "std_reward": 1.3788856249019097, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T11:55:08.129166"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f409228b763d6a62009dbd5a41f0a35b8a290570b688255dbbbc08bced5fc765
|
3 |
size 3056
|