angelinux commited on
Commit
811875b
1 Parent(s): 4ad51b3

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.38 +/- 0.50
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dd22e37596332103fb7b0fd6e37beda7dee0b19da9d6e4d2c956ee722850658
3
+ size 108011
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8b5925ea60>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f8b592598d0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1200000,
45
+ "_total_timesteps": 1200000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677759786705776790,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAa+XbPpkCyjxAMA8/a+XbPpkCyjxAMA8/a+XbPpkCyjxAMA8/a+XbPpkCyjxAMA8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA04VgP7tdJD0ufQe/+oHjPj0syb/3Tu4+gf8LPmvRhT+szsk9TA6YP85xIr/MCsU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABr5ds+mQLKPEAwDz9QkaS8OKhVO+wq0Tpr5ds+mQLKPEAwDz9QkaS8OKhVO+wq0Tpr5ds+mQLKPEAwDz9QkaS8OKhVO+wq0Tpr5ds+mQLKPEAwDz9QkaS8OKhVO+wq0TqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.4294847 0.02465944 0.55933 ]\n [0.4294847 0.02465944 0.55933 ]\n [0.4294847 0.02465944 0.55933 ]\n [0.4294847 0.02465944 0.55933 ]]",
60
+ "desired_goal": "[[ 0.877042 0.04012845 -0.52925384]\n [ 0.44435102 -1.5716625 0.4654462 ]\n [ 0.13671686 1.0454534 0.09853873]\n [ 1.1879363 -0.634549 1.539392 ]]",
61
+ "observation": "[[ 0.4294847 0.02465944 0.55933 -0.02008882 0.00326015 0.00159582]\n [ 0.4294847 0.02465944 0.55933 -0.02008882 0.00326015 0.00159582]\n [ 0.4294847 0.02465944 0.55933 -0.02008882 0.00326015 0.00159582]\n [ 0.4294847 0.02465944 0.55933 -0.02008882 0.00326015 0.00159582]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqVOvPVMDnr1nJtQ8GQgDvvt/yb3ruHc9mZGQPeDFWb37bfM6LgUCPjzi+bxpV/E8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.08560879 -0.07715478 0.02589722]\n [-0.12796058 -0.09838863 0.06047909]\n [ 0.07059021 -0.05316722 0.00185722]\n [ 0.12697288 -0.03050338 0.02946063]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIL90kBoF1CsCUhpRSlIwBbJRLMowBdJRHQKylohfShJ11fZQoaAZoCWgPQwhyhuKON/kAwJSGlFKUaBVLMmgWR0CspWUzsQd0dX2UKGgGaAloD0MIU7DG2XQEBcCUhpRSlGgVSzJoFkdArKUjmuDBdnV9lChoBmgJaA9DCEjhehSuZwLAlIaUUpRoFUsyaBZHQKyk4nDziCJ1fZQoaAZoCWgPQwgiwr8IGjMHwJSGlFKUaBVLMmgWR0CspqfhuO0cdX2UKGgGaAloD0MIIVZ/hGHA+r+UhpRSlGgVSzJoFkdArKZrRrrPdHV9lChoBmgJaA9DCIRGsHH9GwPAlIaUUpRoFUsyaBZHQKymKaBqbjN1fZQoaAZoCWgPQwiOPBBZpGkBwJSGlFKUaBVLMmgWR0CspeiBoVVQdX2UKGgGaAloD0MIBK+WOzMB+7+UhpRSlGgVSzJoFkdArKeqgdwNsnV9lChoBmgJaA9DCPkwe9l2mvy/lIaUUpRoFUsyaBZHQKynbb6guh91fZQoaAZoCWgPQwgmjdE6qtoAwJSGlFKUaBVLMmgWR0CspyxyXD3udX2UKGgGaAloD0MIkNyadFsi/L+UhpRSlGgVSzJoFkdArKbrIT4+KXV9lChoBmgJaA9DCH44SIjy5QTAlIaUUpRoFUsyaBZHQKyoo8lHBk91fZQoaAZoCWgPQwhQ/Bhz1zIAwJSGlFKUaBVLMmgWR0CsqGbFKkEcdX2UKGgGaAloD0MIz0wwnGtY/r+UhpRSlGgVSzJoFkdArKglEw35vnV9lChoBmgJaA9DCBiUaTS5uATAlIaUUpRoFUsyaBZHQKyn46K+BYp1fZQoaAZoCWgPQwh4tdyZCUYBwJSGlFKUaBVLMmgWR0CsqdxMewLWdX2UKGgGaAloD0MIpwhwehcvC8CUhpRSlGgVSzJoFkdArKmhezD4xnV9lChoBmgJaA9DCO5D3nL14wLAlIaUUpRoFUsyaBZHQKypYpH7P6d1fZQoaAZoCWgPQwimC7H6IwwHwJSGlFKUaBVLMmgWR0CsqSH2AXl9dX2UKGgGaAloD0MIZHWr56S3AMCUhpRSlGgVSzJoFkdArKt5OpKjBXV9lChoBmgJaA9DCNqOqbuyS/+/lIaUUpRoFUsyaBZHQKyrPR5TqB51fZQoaAZoCWgPQwgPf03WqIf5v5SGlFKUaBVLMmgWR0CsqvxXnyNGdX2UKGgGaAloD0MIhNOCF32F/L+UhpRSlGgVSzJoFkdArKq7ofSx7nV9lChoBmgJaA9DCFPOF3svPgbAlIaUUpRoFUsyaBZHQKytFH09QoF1fZQoaAZoCWgPQwjGTQ00n3MBwJSGlFKUaBVLMmgWR0CsrNhFd9lVdX2UKGgGaAloD0MI/kRlw5pqAcCUhpRSlGgVSzJoFkdArKyXTkQwsXV9lChoBmgJaA9DCLclcsEZPALAlIaUUpRoFUsyaBZHQKysVvo/zJ91fZQoaAZoCWgPQwgaUG9GzRf3v5SGlFKUaBVLMmgWR0CsrsyvTw2EdX2UKGgGaAloD0MIbTmX4qpy/L+UhpRSlGgVSzJoFkdArK6Qy2x6fXV9lChoBmgJaA9DCIh/2NKjiQLAlIaUUpRoFUsyaBZHQKyuUEhaC+V1fZQoaAZoCWgPQwhTBg5o6Qr8v5SGlFKUaBVLMmgWR0Csrg+rELpidX2UKGgGaAloD0MIL4UHza67AcCUhpRSlGgVSzJoFkdArLCBoh6jWXV9lChoBmgJaA9DCOmcn+I4MATAlIaUUpRoFUsyaBZHQKywRWzWwvB1fZQoaAZoCWgPQwiBWaFI93P9v5SGlFKUaBVLMmgWR0CssAS0a6z3dX2UKGgGaAloD0MIECTvHMqwAMCUhpRSlGgVSzJoFkdArK/EBMi8nXV9lChoBmgJaA9DCMPVARB39f6/lIaUUpRoFUsyaBZHQKyyPpeNT991fZQoaAZoCWgPQwjsGFdcHBUIwJSGlFKUaBVLMmgWR0CssgJiZv1ldX2UKGgGaAloD0MIFK+ytike/7+UhpRSlGgVSzJoFkdArLHB2OhkAnV9lChoBmgJaA9DCCXpmsk32/+/lIaUUpRoFUsyaBZHQKyxgYD1XeZ1fZQoaAZoCWgPQwjiVkEMdA0AwJSGlFKUaBVLMmgWR0Css+19Wp6ydX2UKGgGaAloD0MI18BWCRbHAMCUhpRSlGgVSzJoFkdArLOxS3solXV9lChoBmgJaA9DCO/jaI6sfAHAlIaUUpRoFUsyaBZHQKyzcGu9vjx1fZQoaAZoCWgPQwhZUu4+x6cBwJSGlFKUaBVLMmgWR0Cssy/t6X0HdX2UKGgGaAloD0MI7ISX4NQHAcCUhpRSlGgVSzJoFkdArLVGVZ9uxnV9lChoBmgJaA9DCJxu2SH+Yfu/lIaUUpRoFUsyaBZHQKy1CV32VVx1fZQoaAZoCWgPQwhX7gVmhSIPwJSGlFKUaBVLMmgWR0CstMe49X9zdX2UKGgGaAloD0MIM23/ykqzBMCUhpRSlGgVSzJoFkdArLSGchC+lHV9lChoBmgJaA9DCATnjCjtbQDAlIaUUpRoFUsyaBZHQKy2P4Uvf0p1fZQoaAZoCWgPQwjNd/ATBxD8v5SGlFKUaBVLMmgWR0CstgKNQ0oCdX2UKGgGaAloD0MIw50LI73o/b+UhpRSlGgVSzJoFkdArLXA+MZP23V9lChoBmgJaA9DCGnDYWngRwPAlIaUUpRoFUsyaBZHQKy1f668QI51fZQoaAZoCWgPQwiY9s391YMDwJSGlFKUaBVLMmgWR0Cst0DWK/EgdX2UKGgGaAloD0MIjIUhcvoaDsCUhpRSlGgVSzJoFkdArLcD+PzWgHV9lChoBmgJaA9DCDQsRl1rjwHAlIaUUpRoFUsyaBZHQKy2wmtyPuJ1fZQoaAZoCWgPQwg5nPnVHKAAwJSGlFKUaBVLMmgWR0CstoERJ2+xdX2UKGgGaAloD0MIPdf34SABBsCUhpRSlGgVSzJoFkdArLg+CZnctXV9lChoBmgJaA9DCA2nzM034gbAlIaUUpRoFUsyaBZHQKy4AT5ftyB1fZQoaAZoCWgPQwh/3enOE48FwJSGlFKUaBVLMmgWR0Cst7+z+m3wdX2UKGgGaAloD0MI/oAHBhB+/r+UhpRSlGgVSzJoFkdArLd+W2PT5XV9lChoBmgJaA9DCOo+AKlNfADAlIaUUpRoFUsyaBZHQKy5QgSOBDp1fZQoaAZoCWgPQwi2os1xbpP7v5SGlFKUaBVLMmgWR0CsuQUOd5IIdX2UKGgGaAloD0MIVyJQ/YOIBsCUhpRSlGgVSzJoFkdArLjDeCTUzHV9lChoBmgJaA9DCAskKH6M+QPAlIaUUpRoFUsyaBZHQKy4ghUzbex1fZQoaAZoCWgPQwgeF9UiohgNwJSGlFKUaBVLMmgWR0CsukKO938odX2UKGgGaAloD0MIXtVZLbBHA8CUhpRSlGgVSzJoFkdArLoFnf2saXV9lChoBmgJaA9DCPhUTntK7gHAlIaUUpRoFUsyaBZHQKy5xBu4wyt1fZQoaAZoCWgPQwj6fJQRF8D8v5SGlFKUaBVLMmgWR0CsuYLO7g89dX2UKGgGaAloD0MIB+v/HOZrC8CUhpRSlGgVSzJoFkdArLtBm5DqnnV9lChoBmgJaA9DCGAEjZlE/QDAlIaUUpRoFUsyaBZHQKy7BKBd2Pl1fZQoaAZoCWgPQwitUQ/R6A4BwJSGlFKUaBVLMmgWR0CsusMEzO5bdX2UKGgGaAloD0MITrSrkPIzAcCUhpRSlGgVSzJoFkdArLqBlWfbsXV9lChoBmgJaA9DCBfyCG6kbPy/lIaUUpRoFUsyaBZHQKy8NM0xdpt1fZQoaAZoCWgPQwgKLev+sZD5v5SGlFKUaBVLMmgWR0Csu/fHxSYPdX2UKGgGaAloD0MIXYqryr5rBcCUhpRSlGgVSzJoFkdArLu2HerMknV9lChoBmgJaA9DCN9wH7k1KQLAlIaUUpRoFUsyaBZHQKy7dLgXMyJ1fZQoaAZoCWgPQwjrOlRTkrX6v5SGlFKUaBVLMmgWR0CsvTmplz2fdX2UKGgGaAloD0MI5llJK75hAcCUhpRSlGgVSzJoFkdArLz8sFt8/nV9lChoBmgJaA9DCIQNT6+UJfy/lIaUUpRoFUsyaBZHQKy8uw9q1w51fZQoaAZoCWgPQwjzV8hcGdQAwJSGlFKUaBVLMmgWR0CsvHnHWBjGdX2UKGgGaAloD0MIm5DWGHSiCMCUhpRSlGgVSzJoFkdArL48qMFUynV9lChoBmgJaA9DCD4+ITtvQwjAlIaUUpRoFUsyaBZHQKy9/+/gzgx1fZQoaAZoCWgPQwixNsZOeKkHwJSGlFKUaBVLMmgWR0Csvb6lchTwdX2UKGgGaAloD0MIXMzPDU15AMCUhpRSlGgVSzJoFkdArL19aY/mknV9lChoBmgJaA9DCDUJ3pBGhQDAlIaUUpRoFUsyaBZHQKy/SBI4EOl1fZQoaAZoCWgPQwgrTyDsFCv9v5SGlFKUaBVLMmgWR0Csvws3IdU9dX2UKGgGaAloD0MIxSCwcmiRBcCUhpRSlGgVSzJoFkdArL7JrFfiP3V9lChoBmgJaA9DCCY0SSwp9wfAlIaUUpRoFUsyaBZHQKy+iGSIP9V1fZQoaAZoCWgPQwj6CPzh518HwJSGlFKUaBVLMmgWR0CswEn8sMAndX2UKGgGaAloD0MIRaD6B5FsAcCUhpRSlGgVSzJoFkdArMANVcUuc3V9lChoBmgJaA9DCEQ0uoPYGf+/lIaUUpRoFUsyaBZHQKy/y/zJ6pp1fZQoaAZoCWgPQwhXXvI/+ZsDwJSGlFKUaBVLMmgWR0Csv4rBCUosdX2UKGgGaAloD0MIwAevXdqQAMCUhpRSlGgVSzJoFkdArMFFq33HrHV9lChoBmgJaA9DCEiLM4Y5gQbAlIaUUpRoFUsyaBZHQKzBCLHdXT51fZQoaAZoCWgPQwi7050nnrMCwJSGlFKUaBVLMmgWR0CswMdiUgSwdX2UKGgGaAloD0MI0xVsI55MAcCUhpRSlGgVSzJoFkdArMCGE9Mbm3V9lChoBmgJaA9DCAQAx549dwPAlIaUUpRoFUsyaBZHQKzCPxzaK1p1fZQoaAZoCWgPQwiXj6SkhwELwJSGlFKUaBVLMmgWR0CswgIkAxSHdX2UKGgGaAloD0MIQfFjzF0L/L+UhpRSlGgVSzJoFkdArMHAlUp/gHV9lChoBmgJaA9DCGL4iJgSqQPAlIaUUpRoFUsyaBZHQKzBfzxPO6d1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 60000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fd9233ea651db3f241047e9c947e69c892eb4366d7cbe6ae778095a99df8887
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e04608027316528c6d95a6fccbcdb52d4296643ec36d96d72ee4796c46953f43
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8b5925ea60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8b592598d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1200000, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677759786705776790, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAa+XbPpkCyjxAMA8/a+XbPpkCyjxAMA8/a+XbPpkCyjxAMA8/a+XbPpkCyjxAMA8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA04VgP7tdJD0ufQe/+oHjPj0syb/3Tu4+gf8LPmvRhT+szsk9TA6YP85xIr/MCsU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABr5ds+mQLKPEAwDz9QkaS8OKhVO+wq0Tpr5ds+mQLKPEAwDz9QkaS8OKhVO+wq0Tpr5ds+mQLKPEAwDz9QkaS8OKhVO+wq0Tpr5ds+mQLKPEAwDz9QkaS8OKhVO+wq0TqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4294847 0.02465944 0.55933 ]\n [0.4294847 0.02465944 0.55933 ]\n [0.4294847 0.02465944 0.55933 ]\n [0.4294847 0.02465944 0.55933 ]]", "desired_goal": "[[ 0.877042 0.04012845 -0.52925384]\n [ 0.44435102 -1.5716625 0.4654462 ]\n [ 0.13671686 1.0454534 0.09853873]\n [ 1.1879363 -0.634549 1.539392 ]]", "observation": "[[ 0.4294847 0.02465944 0.55933 -0.02008882 0.00326015 0.00159582]\n [ 0.4294847 0.02465944 0.55933 -0.02008882 0.00326015 0.00159582]\n [ 0.4294847 0.02465944 0.55933 -0.02008882 0.00326015 0.00159582]\n [ 0.4294847 0.02465944 0.55933 -0.02008882 0.00326015 0.00159582]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqVOvPVMDnr1nJtQ8GQgDvvt/yb3ruHc9mZGQPeDFWb37bfM6LgUCPjzi+bxpV/E8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08560879 -0.07715478 0.02589722]\n [-0.12796058 -0.09838863 0.06047909]\n [ 0.07059021 -0.05316722 0.00185722]\n [ 0.12697288 -0.03050338 0.02946063]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIL90kBoF1CsCUhpRSlIwBbJRLMowBdJRHQKylohfShJ11fZQoaAZoCWgPQwhyhuKON/kAwJSGlFKUaBVLMmgWR0CspWUzsQd0dX2UKGgGaAloD0MIU7DG2XQEBcCUhpRSlGgVSzJoFkdArKUjmuDBdnV9lChoBmgJaA9DCEjhehSuZwLAlIaUUpRoFUsyaBZHQKyk4nDziCJ1fZQoaAZoCWgPQwgiwr8IGjMHwJSGlFKUaBVLMmgWR0CspqfhuO0cdX2UKGgGaAloD0MIIVZ/hGHA+r+UhpRSlGgVSzJoFkdArKZrRrrPdHV9lChoBmgJaA9DCIRGsHH9GwPAlIaUUpRoFUsyaBZHQKymKaBqbjN1fZQoaAZoCWgPQwiOPBBZpGkBwJSGlFKUaBVLMmgWR0CspeiBoVVQdX2UKGgGaAloD0MIBK+WOzMB+7+UhpRSlGgVSzJoFkdArKeqgdwNsnV9lChoBmgJaA9DCPkwe9l2mvy/lIaUUpRoFUsyaBZHQKynbb6guh91fZQoaAZoCWgPQwgmjdE6qtoAwJSGlFKUaBVLMmgWR0CspyxyXD3udX2UKGgGaAloD0MIkNyadFsi/L+UhpRSlGgVSzJoFkdArKbrIT4+KXV9lChoBmgJaA9DCH44SIjy5QTAlIaUUpRoFUsyaBZHQKyoo8lHBk91fZQoaAZoCWgPQwhQ/Bhz1zIAwJSGlFKUaBVLMmgWR0CsqGbFKkEcdX2UKGgGaAloD0MIz0wwnGtY/r+UhpRSlGgVSzJoFkdArKglEw35vnV9lChoBmgJaA9DCBiUaTS5uATAlIaUUpRoFUsyaBZHQKyn46K+BYp1fZQoaAZoCWgPQwh4tdyZCUYBwJSGlFKUaBVLMmgWR0CsqdxMewLWdX2UKGgGaAloD0MIpwhwehcvC8CUhpRSlGgVSzJoFkdArKmhezD4xnV9lChoBmgJaA9DCO5D3nL14wLAlIaUUpRoFUsyaBZHQKypYpH7P6d1fZQoaAZoCWgPQwimC7H6IwwHwJSGlFKUaBVLMmgWR0CsqSH2AXl9dX2UKGgGaAloD0MIZHWr56S3AMCUhpRSlGgVSzJoFkdArKt5OpKjBXV9lChoBmgJaA9DCNqOqbuyS/+/lIaUUpRoFUsyaBZHQKyrPR5TqB51fZQoaAZoCWgPQwgPf03WqIf5v5SGlFKUaBVLMmgWR0CsqvxXnyNGdX2UKGgGaAloD0MIhNOCF32F/L+UhpRSlGgVSzJoFkdArKq7ofSx7nV9lChoBmgJaA9DCFPOF3svPgbAlIaUUpRoFUsyaBZHQKytFH09QoF1fZQoaAZoCWgPQwjGTQ00n3MBwJSGlFKUaBVLMmgWR0CsrNhFd9lVdX2UKGgGaAloD0MI/kRlw5pqAcCUhpRSlGgVSzJoFkdArKyXTkQwsXV9lChoBmgJaA9DCLclcsEZPALAlIaUUpRoFUsyaBZHQKysVvo/zJ91fZQoaAZoCWgPQwgaUG9GzRf3v5SGlFKUaBVLMmgWR0CsrsyvTw2EdX2UKGgGaAloD0MIbTmX4qpy/L+UhpRSlGgVSzJoFkdArK6Qy2x6fXV9lChoBmgJaA9DCIh/2NKjiQLAlIaUUpRoFUsyaBZHQKyuUEhaC+V1fZQoaAZoCWgPQwhTBg5o6Qr8v5SGlFKUaBVLMmgWR0Csrg+rELpidX2UKGgGaAloD0MIL4UHza67AcCUhpRSlGgVSzJoFkdArLCBoh6jWXV9lChoBmgJaA9DCOmcn+I4MATAlIaUUpRoFUsyaBZHQKywRWzWwvB1fZQoaAZoCWgPQwiBWaFI93P9v5SGlFKUaBVLMmgWR0CssAS0a6z3dX2UKGgGaAloD0MIECTvHMqwAMCUhpRSlGgVSzJoFkdArK/EBMi8nXV9lChoBmgJaA9DCMPVARB39f6/lIaUUpRoFUsyaBZHQKyyPpeNT991fZQoaAZoCWgPQwjsGFdcHBUIwJSGlFKUaBVLMmgWR0CssgJiZv1ldX2UKGgGaAloD0MIFK+ytike/7+UhpRSlGgVSzJoFkdArLHB2OhkAnV9lChoBmgJaA9DCCXpmsk32/+/lIaUUpRoFUsyaBZHQKyxgYD1XeZ1fZQoaAZoCWgPQwjiVkEMdA0AwJSGlFKUaBVLMmgWR0Css+19Wp6ydX2UKGgGaAloD0MI18BWCRbHAMCUhpRSlGgVSzJoFkdArLOxS3solXV9lChoBmgJaA9DCO/jaI6sfAHAlIaUUpRoFUsyaBZHQKyzcGu9vjx1fZQoaAZoCWgPQwhZUu4+x6cBwJSGlFKUaBVLMmgWR0Cssy/t6X0HdX2UKGgGaAloD0MI7ISX4NQHAcCUhpRSlGgVSzJoFkdArLVGVZ9uxnV9lChoBmgJaA9DCJxu2SH+Yfu/lIaUUpRoFUsyaBZHQKy1CV32VVx1fZQoaAZoCWgPQwhX7gVmhSIPwJSGlFKUaBVLMmgWR0CstMe49X9zdX2UKGgGaAloD0MIM23/ykqzBMCUhpRSlGgVSzJoFkdArLSGchC+lHV9lChoBmgJaA9DCATnjCjtbQDAlIaUUpRoFUsyaBZHQKy2P4Uvf0p1fZQoaAZoCWgPQwjNd/ATBxD8v5SGlFKUaBVLMmgWR0CstgKNQ0oCdX2UKGgGaAloD0MIw50LI73o/b+UhpRSlGgVSzJoFkdArLXA+MZP23V9lChoBmgJaA9DCGnDYWngRwPAlIaUUpRoFUsyaBZHQKy1f668QI51fZQoaAZoCWgPQwiY9s391YMDwJSGlFKUaBVLMmgWR0Cst0DWK/EgdX2UKGgGaAloD0MIjIUhcvoaDsCUhpRSlGgVSzJoFkdArLcD+PzWgHV9lChoBmgJaA9DCDQsRl1rjwHAlIaUUpRoFUsyaBZHQKy2wmtyPuJ1fZQoaAZoCWgPQwg5nPnVHKAAwJSGlFKUaBVLMmgWR0CstoERJ2+xdX2UKGgGaAloD0MIPdf34SABBsCUhpRSlGgVSzJoFkdArLg+CZnctXV9lChoBmgJaA9DCA2nzM034gbAlIaUUpRoFUsyaBZHQKy4AT5ftyB1fZQoaAZoCWgPQwh/3enOE48FwJSGlFKUaBVLMmgWR0Cst7+z+m3wdX2UKGgGaAloD0MI/oAHBhB+/r+UhpRSlGgVSzJoFkdArLd+W2PT5XV9lChoBmgJaA9DCOo+AKlNfADAlIaUUpRoFUsyaBZHQKy5QgSOBDp1fZQoaAZoCWgPQwi2os1xbpP7v5SGlFKUaBVLMmgWR0CsuQUOd5IIdX2UKGgGaAloD0MIVyJQ/YOIBsCUhpRSlGgVSzJoFkdArLjDeCTUzHV9lChoBmgJaA9DCAskKH6M+QPAlIaUUpRoFUsyaBZHQKy4ghUzbex1fZQoaAZoCWgPQwgeF9UiohgNwJSGlFKUaBVLMmgWR0CsukKO938odX2UKGgGaAloD0MIXtVZLbBHA8CUhpRSlGgVSzJoFkdArLoFnf2saXV9lChoBmgJaA9DCPhUTntK7gHAlIaUUpRoFUsyaBZHQKy5xBu4wyt1fZQoaAZoCWgPQwj6fJQRF8D8v5SGlFKUaBVLMmgWR0CsuYLO7g89dX2UKGgGaAloD0MIB+v/HOZrC8CUhpRSlGgVSzJoFkdArLtBm5DqnnV9lChoBmgJaA9DCGAEjZlE/QDAlIaUUpRoFUsyaBZHQKy7BKBd2Pl1fZQoaAZoCWgPQwitUQ/R6A4BwJSGlFKUaBVLMmgWR0CsusMEzO5bdX2UKGgGaAloD0MITrSrkPIzAcCUhpRSlGgVSzJoFkdArLqBlWfbsXV9lChoBmgJaA9DCBfyCG6kbPy/lIaUUpRoFUsyaBZHQKy8NM0xdpt1fZQoaAZoCWgPQwgKLev+sZD5v5SGlFKUaBVLMmgWR0Csu/fHxSYPdX2UKGgGaAloD0MIXYqryr5rBcCUhpRSlGgVSzJoFkdArLu2HerMknV9lChoBmgJaA9DCN9wH7k1KQLAlIaUUpRoFUsyaBZHQKy7dLgXMyJ1fZQoaAZoCWgPQwjrOlRTkrX6v5SGlFKUaBVLMmgWR0CsvTmplz2fdX2UKGgGaAloD0MI5llJK75hAcCUhpRSlGgVSzJoFkdArLz8sFt8/nV9lChoBmgJaA9DCIQNT6+UJfy/lIaUUpRoFUsyaBZHQKy8uw9q1w51fZQoaAZoCWgPQwjzV8hcGdQAwJSGlFKUaBVLMmgWR0CsvHnHWBjGdX2UKGgGaAloD0MIm5DWGHSiCMCUhpRSlGgVSzJoFkdArL48qMFUynV9lChoBmgJaA9DCD4+ITtvQwjAlIaUUpRoFUsyaBZHQKy9/+/gzgx1fZQoaAZoCWgPQwixNsZOeKkHwJSGlFKUaBVLMmgWR0Csvb6lchTwdX2UKGgGaAloD0MIXMzPDU15AMCUhpRSlGgVSzJoFkdArL19aY/mknV9lChoBmgJaA9DCDUJ3pBGhQDAlIaUUpRoFUsyaBZHQKy/SBI4EOl1fZQoaAZoCWgPQwgrTyDsFCv9v5SGlFKUaBVLMmgWR0Csvws3IdU9dX2UKGgGaAloD0MIxSCwcmiRBcCUhpRSlGgVSzJoFkdArL7JrFfiP3V9lChoBmgJaA9DCCY0SSwp9wfAlIaUUpRoFUsyaBZHQKy+iGSIP9V1fZQoaAZoCWgPQwj6CPzh518HwJSGlFKUaBVLMmgWR0CswEn8sMAndX2UKGgGaAloD0MIRaD6B5FsAcCUhpRSlGgVSzJoFkdArMANVcUuc3V9lChoBmgJaA9DCEQ0uoPYGf+/lIaUUpRoFUsyaBZHQKy/y/zJ6pp1fZQoaAZoCWgPQwhXXvI/+ZsDwJSGlFKUaBVLMmgWR0Csv4rBCUosdX2UKGgGaAloD0MIwAevXdqQAMCUhpRSlGgVSzJoFkdArMFFq33HrHV9lChoBmgJaA9DCEiLM4Y5gQbAlIaUUpRoFUsyaBZHQKzBCLHdXT51fZQoaAZoCWgPQwi7050nnrMCwJSGlFKUaBVLMmgWR0CswMdiUgSwdX2UKGgGaAloD0MI0xVsI55MAcCUhpRSlGgVSzJoFkdArMCGE9Mbm3V9lChoBmgJaA9DCAQAx549dwPAlIaUUpRoFUsyaBZHQKzCPxzaK1p1fZQoaAZoCWgPQwiXj6SkhwELwJSGlFKUaBVLMmgWR0CswgIkAxSHdX2UKGgGaAloD0MIQfFjzF0L/L+UhpRSlGgVSzJoFkdArMHAlUp/gHV9lChoBmgJaA9DCGL4iJgSqQPAlIaUUpRoFUsyaBZHQKzBfzxPO6d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 60000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (825 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.38265324246604, "std_reward": 0.4959822944669087, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T13:31:27.482823"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb398a88b2b095a766298753dccf44645eef44af4a3a1563afaeea91adaad114
3
+ size 3056