File size: 13,405 Bytes
95071e7
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7993fcc68310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7993fcc683a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7993fcc68430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7993fcc684c0>", "_build": "<function ActorCriticPolicy._build at 0x7993fcc68550>", "forward": "<function ActorCriticPolicy.forward at 0x7993fcc685e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7993fcc68670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7993fcc68700>", "_predict": "<function ActorCriticPolicy._predict at 0x7993fcc68790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7993fcc68820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7993fcc688b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7993fcc68940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7993fcc09200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 200704, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726865807619754114, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAABZ0wz4uQIg/u61iu681gb0x8/M71ltSvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFttUVzp5eKMAWyUTegDjAF0lEdAaegdZJTVD3V9lChoBkfAWITPeHi3omgHTegDaAhHQGo6yquKXOZ1fZQoaAZHwFOPGoaUA1hoB03oA2gIR0BqWl83Mpw0dX2UKGgGR8BTqW4iHIp6aAdN6ANoCEdAat8K0D2alXV9lChoBkfASMDjNpudgGgHTegDaAhHQGsbBXKbKA91fZQoaAZHwDZFNj9XLeRoB03oA2gIR0BrThUedTYNdX2UKGgGR8BUAcByS3b3aAdN6ANoCEdAa6aRYigTRXV9lChoBkfAYUILwWnCO2gHTegDaAhHQGvGUMXrMTx1fZQoaAZHwFG6BInSfDloB03oA2gIR0BsGilJpWWAdX2UKGgGR8Bdn3q/ub7TaAdN6ANoCEdAbDuElE7W/nV9lChoBkfAUb7FR51Ng2gHTegDaAhHQGyzFtCRfWt1fZQoaAZHwELLufEn9ehoB03oA2gIR0Bs2Uu14Pf9dX2UKGgGR8BRVinUDuBuaAdN6ANoCEdAbTGCoS+QEXV9lChoBkfASM9M7EHdGmgHTegDaAhHQG1TX/Pw/gR1fZQoaAZHwEyPnjABT4toB03oA2gIR0Btq9ZV4oqkdX2UKGgGR8A3PNbC79Q5aAdN6ANoCEdAbc05jH4oJHV9lChoBkfATCuSwGGEf2gHTegDaAhHQG4n25paibl1fZQoaAZHwEB2F+NLlFNoB03oA2gIR0BuVzZi/fwadX2UKGgGR8A/GMWGh24eaAdN6ANoCEdAbr+ngHeJpHV9lChoBkfASN7q2SdOI2gHTegDaAhHQG7guvt+kQB1fZQoaAZHwECjdHDrJKdoB03oA2gIR0BvPbdpItlJdX2UKGgGR8BBUrc9GI9DaAdN6ANoCEdAb2BnA6+36XV9lChoBkfAMa1mrbQC0WgHTegDaAhHQG+7gRK6Fuh1fZQoaAZHwEPEyk9ECvJoB03oA2gIR0Bv5e3WnTAndX2UKGgGR8BUwiONo8ISaAdN6ANoCEdAcCalMyrPt3V9lChoBkfAFHtBv73wkWgHTegDaAhHQHA2iNCJGfB1fZQoaAZHwDp80aZQYUFoB03oA2gIR0BwZR9nbqQjdX2UKGgGR8A8RvYe1a4daAdN6ANoCEdAcHUdLg4wRHV9lChoBkfANEH3cpLEk2gHTegDaAhHQHCc1qFh5Pd1fZQoaAZHwEJp8dgfEGZoB03oA2gIR0BwrPwOOKfndX2UKGgGR8BGGxArxy4naAdN6ANoCEdAcOhhakhzNnV9lChoBkfAQa7PQfIS12gHTegDaAhHQHD4P2wmmch1fZQoaAZHwFD9J+lTFVFoB03oA2gIR0BxJGIVM23sdX2UKGgGR8BB9wQcxTKlaAdN6ANoCEdAcTV8NQTEi3V9lChoBkfAOGAYLsrupmgHTegDaAhHQHFeXqu8sc11fZQoaAZHwEUXCk43m3hoB03oA2gIR0BxbccQyylfdX2UKGgGR8BGxCW/rSmZaAdN6ANoCEdAcZ+LXL/0d3V9lChoBkfAOXCwbEP1+WgHTegDaAhHQHG4t4NZvDR1fZQoaAZHwExf4YaYNRZoB03oA2gIR0Bx6B9Dx9XtdX2UKGgGR8BLL7ONYKYzaAdN6ANoCEdAcfiCQ9zOo3V9lChoBkfAUBDfoA4n4WgHTegDaAhHQHIl9nXd0q91fZQoaAZHwErkR8twrDtoB03oA2gIR0ByNfQPZqVRdX2UKGgGR8BUM8FQl8gIaAdN6ANoCEdAcmB9/SYw7HV9lChoBkfAONA+hXbM5mgHTegDaAhHQHJ1RAB1cMV1fZQoaAZHwFHwgYgq3E1oB03oA2gIR0ByryAnUlRhdX2UKGgGR8BNnNKAavRraAdN6ANoCEdAcr6Dej2zwHV9lChoBkfAUl+sDGLk0mgHTegDaAhHQHLnoCEHt4R1fZQoaAZHwFAb0Sh8IAxoB03oA2gIR0By967YkE9udX2UKGgGR8BRrVI/Z/TcaAdN6ANoCEdAcwc0NBnjAHV9lChoBkfAQmmMyad+X2gHTegDaAhHQHMxSWVu76J1fZQoaAZHwEqtj7yhBZ9oB03oA2gIR0BzRA3Lmp2mdX2UKGgGR8A5Su01IiC8aAdN6ANoCEdAc4CZML4N7XV9lChoBkfAUh5HXmNipmgHTegDaAhHQHORtWhh6Sl1fZQoaAZHwFJEKE384xVoB03oA2gIR0BzvMt4A0bcdX2UKGgGR8BUiI+W4Vh1aAdN6ANoCEdAc84vh60IC3V9lChoBkfAVyVOpKjBVWgHTegDaAhHQHP5aMJhOQB1fZQoaAZHwE3IySFGoaVoB03oA2gIR0B0Dg/Y8Md+dX2UKGgGR8BPMIIfKZDzaAdN6ANoCEdAdEt/n4fwJHV9lChoBkfAScQ/Vy3kP2gHTegDaAhHQHRdgSrYGt91fZQoaAZHwEwULBKtga5oB03oA2gIR0B0hnTjNpuddX2UKGgGR8BUkRMFlkH2aAdN6ANoCEdAdJYKLbYbsHV9lChoBkfAOh7kKeCkGmgHTegDaAhHQHTBDynUDuB1fZQoaAZHwFVG+fywwCdoB03oA2gIR0B00XsdDIBBdX2UKGgGR8BHXDGDL8rJaAdN6ANoCEdAdP8jBVMmGHV9lChoBkfAQ8yjWTX8O2gHTegDaAhHQHUY/S6UaAF1fZQoaAZHwEFG4e9zwMJoB03oA2gIR0B1THVG0/nodX2UKGgGR8BRRCnDR+jNaAdN6ANoCEdAdVzuxKQJX3V9lChoBkfAR844wRGtp2gHTegDaAhHQHWJEUbkwN91fZQoaAZHwFBBOEM9bHJoB03oA2gIR0B1mUDq4YrKdX2UKGgGR8BJ8VEE1VHXaAdN6ANoCEdAdcNd1MdtEXV9lChoBkfAO9y2+fywwGgHTegDaAhHQHXXTnA6+391fZQoaAZHwEiKLehwl0JoB03oA2gIR0B2FaARTS9edX2UKGgGR8BQalN+LFXJaAdN6ANoCEdAdiboaUA1enV9lChoBkfASKNeD3/PxGgHTegDaAhHQHZTWWQfZEl1fZQoaAZHwEyY7aqS5iFoB03oA2gIR0B2ZKUu+RHPdX2UKGgGR8BDMIGpuMuOaAdN6ANoCEdAdo4gLqlgt3V9lChoBkfAWJKmpEQXh2gHTegDaAhHQHaetNSIgvF1fZQoaAZHwEyISTyJ9ApoB03oA2gIR0B22McU/OdHdX2UKGgGR8Aj0q0dBBzFaAdN6ANoCEdAdu30ihWYGHV9lChoBkfAR5S2a2F36mgHTegDaAhHQHcWtdE9dNZ1fZQoaAZHwFSUDiwSrYJoB03oA2gIR0B3JkkX1rZbdX2UKGgGR8BDZjIaLn9vaAdN6ANoCEdAd1CBWgezU3V9lChoBkfAT/i5RTCLuWgHTegDaAhHQHdg3rD63y91fZQoaAZHwEr3TNt65XloB03oA2gIR0B3j38+A3DOdX2UKGgGR8BDzQ66reZYaAdN6ANoCEdAd6ZUVi4J/3V9lChoBkfASn+JP69CeGgHTegDaAhHQHfev5Lytmt1fZQoaAZHwEsMEjgQ6IZoB03oA2gIR0B37xnctXgcdX2UKGgGR8A+k9mHxjJ/aAdN6ANoCEdAeBxM10knkXV9lChoBkfATSTs4T9KmWgHTegDaAhHQHgsz7/GVA11fZQoaAZHwD+6OzY287JoB03oA2gIR0B4VuWLP2PDdX2UKGgGR8A/QNXYDklvaAdN6ANoCEdAeGbBiCrcTXV9lChoBkfASdoB7u2JBWgHTegDaAhHQHh8i1NQCS11fZQoaAZHwEOry6MBIWhoB03oA2gIR0B4tts1sLv1dX2UKGgGR8A3WpVjqfOEaAdN6ANoCEdAeMffseGO/HV9lChoBkfATl8I/qxC6mgHTegDaAhHQHj2bZi/fwZ1fZQoaAZHwEXfdO6/ZdxoB03oA2gIR0B5Bivt+kP+dX2UKGgGR8BDpuPmxMWXaAdN6ANoCEdAeS3rv9cbBHV9lChoBkfARCs/SpiqhmgHTegDaAhHQHk9pVGTcIt1fZQoaAZHwDGFY6nzg/FoB03oA2gIR0B5cWKhtcfOdX2UKGgGR8Awz6ltTDO1aAdN6ANoCEdAeYb01qFh5XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRiMIF3zltJ9qUZmxrWm5DzACMA2luY5SKEOXTRBM2Ch0f4fUhf5t8hUB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}