--- library_name: transformers license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - oxford102_flower_dataset metrics: - accuracy - precision - recall - f1 model-index: - name: resnet-50-finetuned-oxfordflowers results: - task: name: Image Classification type: image-classification dataset: name: oxford102_flower_dataset type: oxford102_flower_dataset config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8329809725158562 - name: Precision type: precision value: 0.8530722962152707 - name: Recall type: recall value: 0.8329809725158562 - name: F1 type: f1 value: 0.8319188207666911 --- # resnet-50-finetuned-oxfordflowers This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the oxford102_flower_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.6561 - Accuracy: 0.8330 - Precision: 0.8531 - Recall: 0.8330 - F1: 0.8319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 4.4813 | 1.0 | 32 | 4.1934 | 0.3176 | 0.3522 | 0.3176 | 0.2599 | | 2.6507 | 2.0 | 64 | 1.8716 | 0.5382 | 0.5792 | 0.5382 | 0.4930 | | 1.257 | 3.0 | 96 | 1.0998 | 0.7216 | 0.7663 | 0.7216 | 0.7085 | | 0.5333 | 4.0 | 128 | 0.9724 | 0.7422 | 0.7875 | 0.7422 | 0.7296 | | 0.2506 | 5.0 | 160 | 0.8243 | 0.7627 | 0.7975 | 0.7627 | 0.7566 | | 0.0689 | 6.0 | 192 | 0.7067 | 0.8147 | 0.8482 | 0.8147 | 0.8111 | | 0.0325 | 7.0 | 224 | 0.6370 | 0.8206 | 0.8428 | 0.8206 | 0.8175 | | 0.0132 | 8.0 | 256 | 0.5774 | 0.8412 | 0.8617 | 0.8412 | 0.8389 | | 0.0117 | 9.0 | 288 | 0.5469 | 0.8559 | 0.8726 | 0.8559 | 0.8542 | | 0.0066 | 10.0 | 320 | 0.5384 | 0.8608 | 0.8722 | 0.8608 | 0.8575 | | 0.0072 | 11.0 | 352 | 0.5246 | 0.8686 | 0.8783 | 0.8686 | 0.8650 | | 0.0068 | 12.0 | 384 | 0.5130 | 0.8716 | 0.8790 | 0.8716 | 0.8679 | | 0.0045 | 13.0 | 416 | 0.5038 | 0.8716 | 0.8814 | 0.8716 | 0.8691 | | 0.0025 | 14.0 | 448 | 0.5486 | 0.85 | 0.8627 | 0.85 | 0.8448 | | 0.0029 | 15.0 | 480 | 0.4992 | 0.8637 | 0.8736 | 0.8637 | 0.8619 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0