anilajax commited on
Commit
c7a856c
·
verified ·
1 Parent(s): 2e751e0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -6
README.md CHANGED
@@ -18,17 +18,14 @@ metrics:
18
  library_name: transformers
19
  ---
20
 
21
- Industry standard text to sql generation with high accuracy.
22
 
23
- sample code to start with:
24
 
25
  import torch
26
  from transformers import T5Tokenizer, T5ForConditionalGeneration
27
-
28
- # Initialize the tokenizer from Hugging Face Transformers library
29
  tokenizer = T5Tokenizer.from_pretrained('anilajax/text2sql_industry_standard')
30
 
31
- # Load the model
32
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
33
  model = T5ForConditionalGeneration.from_pretrained('anilajax/text2sql_industry_standard')
34
  model = model.to(device)
@@ -53,5 +50,5 @@ input_prompt = "provide count of students where class = 10"
53
  generated_sql = generate_sql(input_prompt)
54
 
55
  print(f"The generated SQL query is: {generated_sql}")
56
- ## expected output - SELECT COUNT(*) FROM students WHERE class = 10
57
 
 
18
  library_name: transformers
19
  ---
20
 
21
+ # Industry standard text to sql generation with high accuracy.
22
 
23
+ Sample code to begin with:
24
 
25
  import torch
26
  from transformers import T5Tokenizer, T5ForConditionalGeneration
 
 
27
  tokenizer = T5Tokenizer.from_pretrained('anilajax/text2sql_industry_standard')
28
 
 
29
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
30
  model = T5ForConditionalGeneration.from_pretrained('anilajax/text2sql_industry_standard')
31
  model = model.to(device)
 
50
  generated_sql = generate_sql(input_prompt)
51
 
52
  print(f"The generated SQL query is: {generated_sql}")
53
+ #expected output - SELECT COUNT(*) FROM students WHERE class = 10
54