Update README.md
Browse files
README.md
CHANGED
@@ -18,17 +18,14 @@ metrics:
|
|
18 |
library_name: transformers
|
19 |
---
|
20 |
|
21 |
-
Industry standard text to sql generation with high accuracy.
|
22 |
|
23 |
-
|
24 |
|
25 |
import torch
|
26 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
27 |
-
|
28 |
-
# Initialize the tokenizer from Hugging Face Transformers library
|
29 |
tokenizer = T5Tokenizer.from_pretrained('anilajax/text2sql_industry_standard')
|
30 |
|
31 |
-
# Load the model
|
32 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
model = T5ForConditionalGeneration.from_pretrained('anilajax/text2sql_industry_standard')
|
34 |
model = model.to(device)
|
@@ -53,5 +50,5 @@ input_prompt = "provide count of students where class = 10"
|
|
53 |
generated_sql = generate_sql(input_prompt)
|
54 |
|
55 |
print(f"The generated SQL query is: {generated_sql}")
|
56 |
-
|
57 |
|
|
|
18 |
library_name: transformers
|
19 |
---
|
20 |
|
21 |
+
# Industry standard text to sql generation with high accuracy.
|
22 |
|
23 |
+
Sample code to begin with:
|
24 |
|
25 |
import torch
|
26 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
|
|
|
27 |
tokenizer = T5Tokenizer.from_pretrained('anilajax/text2sql_industry_standard')
|
28 |
|
|
|
29 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
model = T5ForConditionalGeneration.from_pretrained('anilajax/text2sql_industry_standard')
|
31 |
model = model.to(device)
|
|
|
50 |
generated_sql = generate_sql(input_prompt)
|
51 |
|
52 |
print(f"The generated SQL query is: {generated_sql}")
|
53 |
+
#expected output - SELECT COUNT(*) FROM students WHERE class = 10
|
54 |
|