File size: 2,935 Bytes
8b953e5 e73532b 8b953e5 e73532b adcbeba e73532b adcbeba e73532b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
library_name: transformers
tags:
- generated_from_trainer
model-index:
- name: cllm-1.0.0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cllm-1.0.0
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7403
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| No log | 0.0044 | 2000 | 3.8105 |
| 4.2179 | 0.0089 | 4000 | 3.4461 |
| 4.2179 | 0.0133 | 6000 | 3.2612 |
| 3.2341 | 0.0178 | 8000 | 3.1610 |
| 3.2341 | 0.0222 | 10000 | 3.0834 |
| 3.0422 | 0.0267 | 12000 | 3.0260 |
| 3.0422 | 0.0311 | 14000 | 2.9872 |
| 2.9347 | 0.0356 | 16000 | 2.9444 |
| 2.9347 | 0.0400 | 18000 | 2.9090 |
| 2.874 | 0.0445 | 20000 | 2.8854 |
| 2.874 | 0.0489 | 22000 | 2.8585 |
| 2.8204 | 0.0534 | 24000 | 2.8405 |
| 2.8204 | 0.0578 | 26000 | 2.8245 |
| 2.7825 | 0.0622 | 28000 | 2.8106 |
| 2.7825 | 0.0667 | 30000 | 2.7993 |
| 2.7555 | 0.0711 | 32000 | 2.7867 |
| 2.7555 | 0.0756 | 34000 | 2.7738 |
| 2.7285 | 0.0800 | 36000 | 2.7700 |
| 2.7285 | 0.0845 | 38000 | 2.7597 |
| 2.7179 | 0.0889 | 40000 | 2.7591 |
| 2.7179 | 0.0934 | 42000 | 2.7488 |
| 2.7119 | 0.0978 | 44000 | 2.7512 |
| 2.7119 | 0.1023 | 46000 | 2.7487 |
| 2.7043 | 0.1067 | 48000 | 2.7436 |
| 2.7043 | 0.1111 | 50000 | 2.7422 |
| 2.7013 | 0.1156 | 52000 | 2.7435 |
| 2.7013 | 0.1200 | 54000 | 2.7388 |
| 2.7029 | 0.1245 | 56000 | 2.7380 |
| 2.7029 | 0.1289 | 58000 | 2.7403 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.1
|