anismahmahi commited on
Commit
2ebb0cc
1 Parent(s): 683e20c

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - f1
10
+ widget:
11
+ - text: 'The Democratic Party was totally corrupted by the Clinton Regime, and now
12
+ it is totally insane.
13
+
14
+ '
15
+ - text: 'The media gave scant coverage to Obama’s close relationship with radical
16
+ Reverend Jeremiah “God damn America) Wright who blamed the US for 9/11.
17
+
18
+ '
19
+ - text: 'It’s sharia compliance in New Mexico.
20
+
21
+ '
22
+ - text: 'Are you people serious?
23
+
24
+ '
25
+ - text: 'However, I ask, why were you not involved in the first place, Mr. President?
26
+
27
+ '
28
+ pipeline_tag: text-classification
29
+ inference: true
30
+ model-index:
31
+ - name: SetFit
32
+ results:
33
+ - task:
34
+ type: text-classification
35
+ name: Text Classification
36
+ dataset:
37
+ name: Unknown
38
+ type: unknown
39
+ split: test
40
+ metrics:
41
+ - type: f1
42
+ value: 0.6720214190093708
43
+ name: F1
44
+ ---
45
+
46
+ # SetFit
47
+
48
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
49
+
50
+ The model has been trained using an efficient few-shot learning technique that involves:
51
+
52
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
53
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
54
+
55
+ ## Model Details
56
+
57
+ ### Model Description
58
+ - **Model Type:** SetFit
59
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
60
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
61
+ - **Maximum Sequence Length:** 512 tokens
62
+ - **Number of Classes:** 2 classes
63
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
64
+ <!-- - **Language:** Unknown -->
65
+ <!-- - **License:** Unknown -->
66
+
67
+ ### Model Sources
68
+
69
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
70
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
71
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
72
+
73
+ ### Model Labels
74
+ | Label | Examples |
75
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
76
+ | 1.0 | <ul><li>'#ukraine Be careful social media and Google are censoring non-propaganda news story like how Ukrainian defense minister is using video games to give the impression they are defeating the Russians to keep the conflict going ! #biden is warmongering Ceasefire , peace & neutrality NOW HTTPURL'</li><li>'https://t.co/CjSFJmng7Z — Sen. Patrick Leahy (@SenatorLeahy) August 1, 2018\n'</li><li>'On Monday afternoon, Homeland Security Secretary Kirstjen Nielsen tweeted out photos of CBP officers in riot gear as well as the barbed wire and barriers citing the reports about plans to “rush” the border.\n'</li></ul> |
77
+ | 0.0 | <ul><li>'President Trump noted that President Obama and his advisers had information that the Russians had been working to interfere in the election and they ignored it, because they thought Hillary Clinton was going to win.\n'</li><li>'Once the truth is accepted that jihadis are inspired and sanctioned by their Islamic texts, it must logically become required that mosques, Islamic schools and groups have to immediately curtail any teaching that motivates sedition, violence, and hatred of unbelievers (i.e.\n'</li><li>'“However, no nation has a more talented, more dedicated group of law enforcement investigators and prosecutors than the United States.”\n'</li></ul> |
78
+
79
+ ## Evaluation
80
+
81
+ ### Metrics
82
+ | Label | F1 |
83
+ |:--------|:-------|
84
+ | **all** | 0.6720 |
85
+
86
+ ## Uses
87
+
88
+ ### Direct Use for Inference
89
+
90
+ First install the SetFit library:
91
+
92
+ ```bash
93
+ pip install setfit
94
+ ```
95
+
96
+ Then you can load this model and run inference.
97
+
98
+ ```python
99
+ from setfit import SetFitModel
100
+
101
+ # Download from the 🤗 Hub
102
+ model = SetFitModel.from_pretrained("anismahmahi/G3-setfit-model")
103
+ # Run inference
104
+ preds = model("Are you people serious?
105
+ ")
106
+ ```
107
+
108
+ <!--
109
+ ### Downstream Use
110
+
111
+ *List how someone could finetune this model on their own dataset.*
112
+ -->
113
+
114
+ <!--
115
+ ### Out-of-Scope Use
116
+
117
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
118
+ -->
119
+
120
+ <!--
121
+ ## Bias, Risks and Limitations
122
+
123
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
124
+ -->
125
+
126
+ <!--
127
+ ### Recommendations
128
+
129
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
130
+ -->
131
+
132
+ ## Training Details
133
+
134
+ ### Training Set Metrics
135
+ | Training set | Min | Median | Max |
136
+ |:-------------|:----|:--------|:----|
137
+ | Word count | 1 | 28.3246 | 129 |
138
+
139
+ | Label | Training Sample Count |
140
+ |:------|:----------------------|
141
+ | 0 | 2362 |
142
+ | 1 | 2518 |
143
+
144
+ ### Training Hyperparameters
145
+ - batch_size: (16, 16)
146
+ - num_epochs: (2, 2)
147
+ - max_steps: -1
148
+ - sampling_strategy: oversampling
149
+ - num_iterations: 5
150
+ - body_learning_rate: (2e-05, 1e-05)
151
+ - head_learning_rate: 0.01
152
+ - loss: CosineSimilarityLoss
153
+ - distance_metric: cosine_distance
154
+ - margin: 0.25
155
+ - end_to_end: False
156
+ - use_amp: False
157
+ - warmup_proportion: 0.1
158
+ - seed: 42
159
+ - eval_max_steps: -1
160
+ - load_best_model_at_end: True
161
+
162
+ ### Training Results
163
+ | Epoch | Step | Training Loss | Validation Loss |
164
+ |:-------:|:--------:|:-------------:|:---------------:|
165
+ | 0.0003 | 1 | 0.3302 | - |
166
+ | 0.0164 | 50 | 0.2709 | - |
167
+ | 0.0328 | 100 | 0.2545 | - |
168
+ | 0.0492 | 150 | 0.229 | - |
169
+ | 0.0656 | 200 | 0.2463 | - |
170
+ | 0.0820 | 250 | 0.2934 | - |
171
+ | 0.0984 | 300 | 0.2735 | - |
172
+ | 0.1148 | 350 | 0.2837 | - |
173
+ | 0.1311 | 400 | 0.2364 | - |
174
+ | 0.1475 | 450 | 0.2379 | - |
175
+ | 0.1639 | 500 | 0.188 | - |
176
+ | 0.1803 | 550 | 0.2443 | - |
177
+ | 0.1967 | 600 | 0.1274 | - |
178
+ | 0.2131 | 650 | 0.2106 | - |
179
+ | 0.2295 | 700 | 0.3211 | - |
180
+ | 0.2459 | 750 | 0.2443 | - |
181
+ | 0.2623 | 800 | 0.1979 | - |
182
+ | 0.2787 | 850 | 0.1679 | - |
183
+ | 0.2951 | 900 | 0.1208 | - |
184
+ | 0.3115 | 950 | 0.0594 | - |
185
+ | 0.3279 | 1000 | 0.11 | - |
186
+ | 0.3443 | 1050 | 0.0951 | - |
187
+ | 0.3607 | 1100 | 0.1059 | - |
188
+ | 0.3770 | 1150 | 0.1027 | - |
189
+ | 0.3934 | 1200 | 0.0771 | - |
190
+ | 0.4098 | 1250 | 0.0295 | - |
191
+ | 0.4262 | 1300 | 0.0696 | - |
192
+ | 0.4426 | 1350 | 0.104 | - |
193
+ | 0.4590 | 1400 | 0.13 | - |
194
+ | 0.4754 | 1450 | 0.1287 | - |
195
+ | 0.4918 | 1500 | 0.0264 | - |
196
+ | 0.5082 | 1550 | 0.0651 | - |
197
+ | 0.5246 | 1600 | 0.113 | - |
198
+ | 0.5410 | 1650 | 0.07 | - |
199
+ | 0.5574 | 1700 | 0.0016 | - |
200
+ | 0.5738 | 1750 | 0.1001 | - |
201
+ | 0.5902 | 1800 | 0.0116 | - |
202
+ | 0.6066 | 1850 | 0.01 | - |
203
+ | 0.6230 | 1900 | 0.0115 | - |
204
+ | 0.6393 | 1950 | 0.0053 | - |
205
+ | 0.6557 | 2000 | 0.0585 | - |
206
+ | 0.6721 | 2050 | 0.0034 | - |
207
+ | 0.6885 | 2100 | 0.0171 | - |
208
+ | 0.7049 | 2150 | 0.0141 | - |
209
+ | 0.7213 | 2200 | 0.0549 | - |
210
+ | 0.7377 | 2250 | 0.0026 | - |
211
+ | 0.7541 | 2300 | 0.1239 | - |
212
+ | 0.7705 | 2350 | 0.0121 | - |
213
+ | 0.7869 | 2400 | 0.0589 | - |
214
+ | 0.8033 | 2450 | 0.0042 | - |
215
+ | 0.8197 | 2500 | 0.0026 | - |
216
+ | 0.8361 | 2550 | 0.003 | - |
217
+ | 0.8525 | 2600 | 0.0004 | - |
218
+ | 0.8689 | 2650 | 0.0003 | - |
219
+ | 0.8852 | 2700 | 0.1 | - |
220
+ | 0.9016 | 2750 | 0.0567 | - |
221
+ | 0.9180 | 2800 | 0.0311 | - |
222
+ | 0.9344 | 2850 | 0.0404 | - |
223
+ | 0.9508 | 2900 | 0.0002 | - |
224
+ | 0.9672 | 2950 | 0.0008 | - |
225
+ | 0.9836 | 3000 | 0.0006 | - |
226
+ | **1.0** | **3050** | **0.0003** | **0.3187** |
227
+ | 1.0164 | 3100 | 0.0003 | - |
228
+ | 1.0328 | 3150 | 0.0002 | - |
229
+ | 1.0492 | 3200 | 0.0002 | - |
230
+ | 1.0656 | 3250 | 0.002 | - |
231
+ | 1.0820 | 3300 | 0.0002 | - |
232
+ | 1.0984 | 3350 | 0.0003 | - |
233
+ | 1.1148 | 3400 | 0.005 | - |
234
+ | 1.1311 | 3450 | 0.0613 | - |
235
+ | 1.1475 | 3500 | 0.0002 | - |
236
+ | 1.1639 | 3550 | 0.0002 | - |
237
+ | 1.1803 | 3600 | 0.0005 | - |
238
+ | 1.1967 | 3650 | 0.0001 | - |
239
+ | 1.2131 | 3700 | 0.0609 | - |
240
+ | 1.2295 | 3750 | 0.0003 | - |
241
+ | 1.2459 | 3800 | 0.0005 | - |
242
+ | 1.2623 | 3850 | 0.0006 | - |
243
+ | 1.2787 | 3900 | 0.0003 | - |
244
+ | 1.2951 | 3950 | 0.0014 | - |
245
+ | 1.3115 | 4000 | 0.0002 | - |
246
+ | 1.3279 | 4050 | 0.0001 | - |
247
+ | 1.3443 | 4100 | 0.0002 | - |
248
+ | 1.3607 | 4150 | 0.001 | - |
249
+ | 1.3770 | 4200 | 0.0004 | - |
250
+ | 1.3934 | 4250 | 0.0004 | - |
251
+ | 1.4098 | 4300 | 0.0002 | - |
252
+ | 1.4262 | 4350 | 0.0612 | - |
253
+ | 1.4426 | 4400 | 0.0613 | - |
254
+ | 1.4590 | 4450 | 0.0002 | - |
255
+ | 1.4754 | 4500 | 0.0603 | - |
256
+ | 1.4918 | 4550 | 0.0001 | - |
257
+ | 1.5082 | 4600 | 0.0011 | - |
258
+ | 1.5246 | 4650 | 0.0576 | - |
259
+ | 1.5410 | 4700 | 0.0001 | - |
260
+ | 1.5574 | 4750 | 0.0002 | - |
261
+ | 1.5738 | 4800 | 0.0002 | - |
262
+ | 1.5902 | 4850 | 0.0012 | - |
263
+ | 1.6066 | 4900 | 0.0003 | - |
264
+ | 1.6230 | 4950 | 0.0001 | - |
265
+ | 1.6393 | 5000 | 0.0001 | - |
266
+ | 1.6557 | 5050 | 0.0001 | - |
267
+ | 1.6721 | 5100 | 0.0001 | - |
268
+ | 1.6885 | 5150 | 0.0001 | - |
269
+ | 1.7049 | 5200 | 0.0002 | - |
270
+ | 1.7213 | 5250 | 0.0001 | - |
271
+ | 1.7377 | 5300 | 0.0002 | - |
272
+ | 1.7541 | 5350 | 0.0001 | - |
273
+ | 1.7705 | 5400 | 0.0001 | - |
274
+ | 1.7869 | 5450 | 0.0001 | - |
275
+ | 1.8033 | 5500 | 0.0001 | - |
276
+ | 1.8197 | 5550 | 0.0003 | - |
277
+ | 1.8361 | 5600 | 0.0001 | - |
278
+ | 1.8525 | 5650 | 0.0001 | - |
279
+ | 1.8689 | 5700 | 0.0001 | - |
280
+ | 1.8852 | 5750 | 0.0001 | - |
281
+ | 1.9016 | 5800 | 0.0002 | - |
282
+ | 1.9180 | 5850 | 0.0 | - |
283
+ | 1.9344 | 5900 | 0.0001 | - |
284
+ | 1.9508 | 5950 | 0.0 | - |
285
+ | 1.9672 | 6000 | 0.0 | - |
286
+ | 1.9836 | 6050 | 0.0001 | - |
287
+ | 2.0 | 6100 | 0.0001 | 0.3313 |
288
+
289
+ * The bold row denotes the saved checkpoint.
290
+ ### Framework Versions
291
+ - Python: 3.10.12
292
+ - SetFit: 1.0.1
293
+ - Sentence Transformers: 2.2.2
294
+ - Transformers: 4.35.2
295
+ - PyTorch: 2.1.0+cu121
296
+ - Datasets: 2.16.1
297
+ - Tokenizers: 0.15.0
298
+
299
+ ## Citation
300
+
301
+ ### BibTeX
302
+ ```bibtex
303
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
304
+ doi = {10.48550/ARXIV.2209.11055},
305
+ url = {https://arxiv.org/abs/2209.11055},
306
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
307
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
308
+ title = {Efficient Few-Shot Learning Without Prompts},
309
+ publisher = {arXiv},
310
+ year = {2022},
311
+ copyright = {Creative Commons Attribution 4.0 International}
312
+ }
313
+ ```
314
+
315
+ <!--
316
+ ## Glossary
317
+
318
+ *Clearly define terms in order to be accessible across audiences.*
319
+ -->
320
+
321
+ <!--
322
+ ## Model Card Authors
323
+
324
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
325
+ -->
326
+
327
+ <!--
328
+ ## Model Card Contact
329
+
330
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
331
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_3050/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ 0,
5
+ 1
6
+ ]
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8db9fb69a14c94dbda58277ded49d69f205fe42bbce2bc9ec51511e30fbd24d1
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e3924d0e5bd242d7f5de59d032fb13315b72172376f765ab5705f4d08ead523
3
+ size 6975
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "MPNetTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff