--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - f1 widget: - text: 'The Democratic Party was totally corrupted by the Clinton Regime, and now it is totally insane. ' - text: 'The media gave scant coverage to Obama’s close relationship with radical Reverend Jeremiah “God damn America) Wright who blamed the US for 9/11. ' - text: 'It’s sharia compliance in New Mexico. ' - text: 'Are you people serious? ' - text: 'However, I ask, why were you not involved in the first place, Mr. President? ' pipeline_tag: text-classification inference: true model-index: - name: SetFit results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: f1 value: 0.6720214190093708 name: F1 --- # SetFit This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1.0 | | | 0.0 | | ## Evaluation ### Metrics | Label | F1 | |:--------|:-------| | **all** | 0.6720 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("anismahmahi/G3-setfit-model") # Run inference preds = model("Are you people serious? ") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 28.3246 | 129 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 2362 | | 1 | 2518 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (2, 2) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 5 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:--------:|:-------------:|:---------------:| | 0.0003 | 1 | 0.3302 | - | | 0.0164 | 50 | 0.2709 | - | | 0.0328 | 100 | 0.2545 | - | | 0.0492 | 150 | 0.229 | - | | 0.0656 | 200 | 0.2463 | - | | 0.0820 | 250 | 0.2934 | - | | 0.0984 | 300 | 0.2735 | - | | 0.1148 | 350 | 0.2837 | - | | 0.1311 | 400 | 0.2364 | - | | 0.1475 | 450 | 0.2379 | - | | 0.1639 | 500 | 0.188 | - | | 0.1803 | 550 | 0.2443 | - | | 0.1967 | 600 | 0.1274 | - | | 0.2131 | 650 | 0.2106 | - | | 0.2295 | 700 | 0.3211 | - | | 0.2459 | 750 | 0.2443 | - | | 0.2623 | 800 | 0.1979 | - | | 0.2787 | 850 | 0.1679 | - | | 0.2951 | 900 | 0.1208 | - | | 0.3115 | 950 | 0.0594 | - | | 0.3279 | 1000 | 0.11 | - | | 0.3443 | 1050 | 0.0951 | - | | 0.3607 | 1100 | 0.1059 | - | | 0.3770 | 1150 | 0.1027 | - | | 0.3934 | 1200 | 0.0771 | - | | 0.4098 | 1250 | 0.0295 | - | | 0.4262 | 1300 | 0.0696 | - | | 0.4426 | 1350 | 0.104 | - | | 0.4590 | 1400 | 0.13 | - | | 0.4754 | 1450 | 0.1287 | - | | 0.4918 | 1500 | 0.0264 | - | | 0.5082 | 1550 | 0.0651 | - | | 0.5246 | 1600 | 0.113 | - | | 0.5410 | 1650 | 0.07 | - | | 0.5574 | 1700 | 0.0016 | - | | 0.5738 | 1750 | 0.1001 | - | | 0.5902 | 1800 | 0.0116 | - | | 0.6066 | 1850 | 0.01 | - | | 0.6230 | 1900 | 0.0115 | - | | 0.6393 | 1950 | 0.0053 | - | | 0.6557 | 2000 | 0.0585 | - | | 0.6721 | 2050 | 0.0034 | - | | 0.6885 | 2100 | 0.0171 | - | | 0.7049 | 2150 | 0.0141 | - | | 0.7213 | 2200 | 0.0549 | - | | 0.7377 | 2250 | 0.0026 | - | | 0.7541 | 2300 | 0.1239 | - | | 0.7705 | 2350 | 0.0121 | - | | 0.7869 | 2400 | 0.0589 | - | | 0.8033 | 2450 | 0.0042 | - | | 0.8197 | 2500 | 0.0026 | - | | 0.8361 | 2550 | 0.003 | - | | 0.8525 | 2600 | 0.0004 | - | | 0.8689 | 2650 | 0.0003 | - | | 0.8852 | 2700 | 0.1 | - | | 0.9016 | 2750 | 0.0567 | - | | 0.9180 | 2800 | 0.0311 | - | | 0.9344 | 2850 | 0.0404 | - | | 0.9508 | 2900 | 0.0002 | - | | 0.9672 | 2950 | 0.0008 | - | | 0.9836 | 3000 | 0.0006 | - | | **1.0** | **3050** | **0.0003** | **0.3187** | | 1.0164 | 3100 | 0.0003 | - | | 1.0328 | 3150 | 0.0002 | - | | 1.0492 | 3200 | 0.0002 | - | | 1.0656 | 3250 | 0.002 | - | | 1.0820 | 3300 | 0.0002 | - | | 1.0984 | 3350 | 0.0003 | - | | 1.1148 | 3400 | 0.005 | - | | 1.1311 | 3450 | 0.0613 | - | | 1.1475 | 3500 | 0.0002 | - | | 1.1639 | 3550 | 0.0002 | - | | 1.1803 | 3600 | 0.0005 | - | | 1.1967 | 3650 | 0.0001 | - | | 1.2131 | 3700 | 0.0609 | - | | 1.2295 | 3750 | 0.0003 | - | | 1.2459 | 3800 | 0.0005 | - | | 1.2623 | 3850 | 0.0006 | - | | 1.2787 | 3900 | 0.0003 | - | | 1.2951 | 3950 | 0.0014 | - | | 1.3115 | 4000 | 0.0002 | - | | 1.3279 | 4050 | 0.0001 | - | | 1.3443 | 4100 | 0.0002 | - | | 1.3607 | 4150 | 0.001 | - | | 1.3770 | 4200 | 0.0004 | - | | 1.3934 | 4250 | 0.0004 | - | | 1.4098 | 4300 | 0.0002 | - | | 1.4262 | 4350 | 0.0612 | - | | 1.4426 | 4400 | 0.0613 | - | | 1.4590 | 4450 | 0.0002 | - | | 1.4754 | 4500 | 0.0603 | - | | 1.4918 | 4550 | 0.0001 | - | | 1.5082 | 4600 | 0.0011 | - | | 1.5246 | 4650 | 0.0576 | - | | 1.5410 | 4700 | 0.0001 | - | | 1.5574 | 4750 | 0.0002 | - | | 1.5738 | 4800 | 0.0002 | - | | 1.5902 | 4850 | 0.0012 | - | | 1.6066 | 4900 | 0.0003 | - | | 1.6230 | 4950 | 0.0001 | - | | 1.6393 | 5000 | 0.0001 | - | | 1.6557 | 5050 | 0.0001 | - | | 1.6721 | 5100 | 0.0001 | - | | 1.6885 | 5150 | 0.0001 | - | | 1.7049 | 5200 | 0.0002 | - | | 1.7213 | 5250 | 0.0001 | - | | 1.7377 | 5300 | 0.0002 | - | | 1.7541 | 5350 | 0.0001 | - | | 1.7705 | 5400 | 0.0001 | - | | 1.7869 | 5450 | 0.0001 | - | | 1.8033 | 5500 | 0.0001 | - | | 1.8197 | 5550 | 0.0003 | - | | 1.8361 | 5600 | 0.0001 | - | | 1.8525 | 5650 | 0.0001 | - | | 1.8689 | 5700 | 0.0001 | - | | 1.8852 | 5750 | 0.0001 | - | | 1.9016 | 5800 | 0.0002 | - | | 1.9180 | 5850 | 0.0 | - | | 1.9344 | 5900 | 0.0001 | - | | 1.9508 | 5950 | 0.0 | - | | 1.9672 | 6000 | 0.0 | - | | 1.9836 | 6050 | 0.0001 | - | | 2.0 | 6100 | 0.0001 | 0.3313 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.1 - Sentence Transformers: 2.2.2 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```