File size: 59,703 Bytes
d45258a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "aba235f2",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-09-27T18:12:18.439224Z",
     "start_time": "2023-09-27T18:12:12.646006Z"
    }
   },
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "import torch\n",
    "from torch import nn\n",
    "import torch.nn.functional as F\n",
    "from torch.nn import init, MarginRankingLoss\n",
    "from transformers import BertModel, RobertaModel\n",
    "from transformers import BertTokenizer, RobertaTokenizer\n",
    "from torch.optim import Adam\n",
    "from distutils.version import LooseVersion\n",
    "from torch.utils.data import Dataset, DataLoader\n",
    "from torch.utils.tensorboard import SummaryWriter\n",
    "from datetime import datetime\n",
    "from torch.autograd import Variable\n",
    "from transformers import AutoConfig, AutoModel, AutoModelForCausalLM, AutoTokenizer\n",
    "import torch.optim as optim\n",
    "from torch.distributions import Categorical\n",
    "import random\n",
    "from transformers import AutoModelForMaskedLM, BertForMaskedLM, AdamW\n",
    "from transformers import BertTokenizer\n",
    "from tqdm import tqdm\n",
    "import matplotlib.pyplot as plt\n",
    "from transformers import XLMRobertaTokenizer\n",
    "import os\n",
    "import csv\n",
    "from sklearn.model_selection import train_test_split\n",
    "import nltk\n",
    "from collections import defaultdict\n",
    "from nltk.tokenize import word_tokenize\n",
    "from nltk import pos_tag\n",
    "from nltk.tokenize import word_tokenize\n",
    "import math\n",
    "from nltk.corpus import words\n",
    "from sklearn.model_selection import train_test_split\n",
    "import random\n",
    "import re\n",
    "import random"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "ddeeea22",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-09-27T18:12:18.442893Z",
     "start_time": "2023-09-27T18:12:18.440610Z"
    }
   },
   "outputs": [],
   "source": [
    "class MyDataset(Dataset):\n",
    "    def __init__(self,file_name):\n",
    "        df1 = pd.read_csv(file_name)\n",
    "        df1 = df1[200:300]\n",
    "        df1 = df1.fillna(\"\")\n",
    "        res = df1['X'].to_numpy()\n",
    "        self.X_list = res\n",
    "        self.y_list = df1['y'].to_numpy()\n",
    "    def __len__(self):\n",
    "        return len(self.X_list)\n",
    "    def __getitem__(self,idx):\n",
    "        mapi = []\n",
    "        mapi.append(self.X_list[idx])\n",
    "        mapi.append(self.y_list[idx])\n",
    "        return mapi"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "dd2fe8b9",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-09-27T18:12:18.466279Z",
     "start_time": "2023-09-27T18:12:18.443804Z"
    }
   },
   "outputs": [],
   "source": [
    "class Step1_model(nn.Module):\n",
    "    def __init__(self, hidden_size=512):\n",
    "#         global old_inp\n",
    "#         global old_mhs\n",
    "#         self.oi = old_inp\n",
    "#         self.old_mhs = old_mhs\n",
    "        super(Step1_model, self).__init__()\n",
    "        self.hidden_size = hidden_size\n",
    "#         self.model = AutoModel.from_pretrained(\"roberta-base\")\n",
    "#         self.tokenizer = AutoTokenizer.from_pretrained(\"roberta-base\")\n",
    "#         self.config = AutoConfig.from_pretrained(\"roberta-base\")\n",
    "        self.model = AutoModelForMaskedLM.from_pretrained('microsoft/graphcodebert-base')\n",
    "        self.tokenizer = AutoTokenizer.from_pretrained(\"microsoft/graphcodebert-base\")\n",
    "        self.config = AutoConfig.from_pretrained(\"microsoft/graphcodebert-base\")\n",
    "        self.linear_layer = nn.Linear(self.model.config.vocab_size, self.model.config.vocab_size)\n",
    "\n",
    "#         self.model = AutoModelForMaskedLM.from_pretrained('bert-base-cased')\n",
    "#         self.tokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")\n",
    "#         self.config = AutoConfig.from_pretrained(\"bert-base-cased\")\n",
    "        for param in self.model.base_model.parameters():\n",
    "            param.requires_grad = True\n",
    "    def foo (self,data):\n",
    "        result = []\n",
    "        if type(data) == tuple:\n",
    "            return data[1]\n",
    "        if type(data) == list:\n",
    "            for inner in data:\n",
    "                result.append(foo(inner))\n",
    "        res = []\n",
    "        for a in result[0]:\n",
    "            res.append(a[:2])\n",
    "        return res\n",
    "    def loss_func1(self, word, y):\n",
    "        if word =='NA':\n",
    "            return torch.full((1,), fill_value=100)\n",
    "        try:\n",
    "            pred_list = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\\d+', word)\n",
    "            target_list = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\\d+', y)\n",
    "            pred_tag = self.foo(nltk.pos_tag(pred_list))\n",
    "            target_tag = self.foo(nltk.pos_tag(target_list))\n",
    "            str1 = ' '.join(pred_tag)  # Convert lists to strings\n",
    "            str2 = ' '.join(target_tag)\n",
    "            distance = Levenshtein.distance(str1, str2)\n",
    "            dist = torch.Tensor([distance])\n",
    "        except:\n",
    "            dist = torch.Tensor([2*len(target_list)])\n",
    "        return dist\n",
    "    def loss_func2(self, word, y):\n",
    "        if word =='NA':\n",
    "            return  torch.full((1,), fill_value=100)\n",
    "        nlp = en_core_web_sm.load()\n",
    "        pred_list = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\\d+', word)\n",
    "        target_list = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\\d+', y)\n",
    "        try:\n",
    "            str1 = ' '.join(pred_list)  # Convert lists to strings\n",
    "            str2 = ' '.join(target_list)\n",
    "            tokens1 = nlp(str1)\n",
    "            tokens2 = nlp(str2)\n",
    "            # Calculate the average word embedding for each string\n",
    "            embedding1 = sum(token.vector for token in tokens1) / len(tokens1)\n",
    "            embedding2 = sum(token.vector for token in tokens2) / len(tokens2)\n",
    "            # Calculate the cosine similarity between the embeddings\n",
    "            w1= LA.norm(embedding1)\n",
    "            w2= LA.norm(embedding2)\n",
    "            distance = 1 - (embedding1.dot(embedding2) / (w1 * w2))\n",
    "            dist = torch.Tensor([distance])\n",
    "        except:\n",
    "            dist = torch.Tensor([1])\n",
    "        return dist\n",
    "    def forward(self, mapi):\n",
    "        global variable_names\n",
    "        global base_model\n",
    "        global tot_pll\n",
    "        global base_tot_pll\n",
    "        X_init1 = mapi[0]\n",
    "        X_init = mapi[0]\n",
    "        y = mapi[1]\n",
    "        print(y)\n",
    "        y_tok = self.tokenizer.encode(y)[1:-1]\n",
    "        nl = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\\d+', y)\n",
    "        lb = ' '.join(nl).lower()\n",
    "        x = self.tokenizer.tokenize(lb)\n",
    "        num_sub_tokens_label = len(x)\n",
    "        X_init = X_init.replace(\"[MASK]\", \" \".join([self.tokenizer.mask_token] * num_sub_tokens_label))\n",
    "        sent_pll = 0.0\n",
    "        base_sent_pll = 0.0\n",
    "        for m in range(num_sub_tokens_label):\n",
    "            print(m)\n",
    "            tokens = self.tokenizer.encode_plus(X_init, add_special_tokens=False,return_tensors='pt')\n",
    "            input_id_chunki = tokens['input_ids'][0].split(510)\n",
    "            input_id_chunks = []\n",
    "            mask_chunks  = []\n",
    "            mask_chunki = tokens['attention_mask'][0].split(510)\n",
    "            for tensor in input_id_chunki:\n",
    "                input_id_chunks.append(tensor)\n",
    "            for tensor in mask_chunki:\n",
    "                mask_chunks.append(tensor)\n",
    "            xi = torch.full((1,), fill_value=101)\n",
    "            yi = torch.full((1,), fill_value=1)\n",
    "            zi = torch.full((1,), fill_value=102)\n",
    "            for r in range(len(input_id_chunks)):\n",
    "                input_id_chunks[r] = torch.cat([xi, input_id_chunks[r]],dim = -1)\n",
    "                input_id_chunks[r] = torch.cat([input_id_chunks[r],zi],dim=-1)\n",
    "                mask_chunks[r] = torch.cat([yi, mask_chunks[r]],dim=-1)\n",
    "                mask_chunks[r] = torch.cat([mask_chunks[r],yi],dim=-1)\n",
    "            di = torch.full((1,), fill_value=0)\n",
    "            for i in range(len(input_id_chunks)):\n",
    "                pad_len = 512 - input_id_chunks[i].shape[0]\n",
    "                if pad_len > 0:\n",
    "                    for p in range(pad_len):\n",
    "                        input_id_chunks[i] = torch.cat([input_id_chunks[i],di],dim=-1)\n",
    "                        mask_chunks[i] = torch.cat([mask_chunks[i],di],dim=-1)\n",
    "            input_ids = torch.stack(input_id_chunks)\n",
    "            attention_mask = torch.stack(mask_chunks)\n",
    "            input_dict = {\n",
    "                'input_ids': input_ids.long(),\n",
    "                'attention_mask': attention_mask.int()\n",
    "            }\n",
    "            maski = []\n",
    "            u = 0\n",
    "            ad = 0\n",
    "            for l in range(len(input_dict['input_ids'])):\n",
    "                masked_pos = []\n",
    "                for i in range(len(input_dict['input_ids'][l])):\n",
    "                    if input_dict['input_ids'][l][i] == 50264: #103\n",
    "                        u+=1\n",
    "                        if i != 0 and input_dict['input_ids'][l][i-1] == 50264:\n",
    "                            continue\n",
    "                        masked_pos.append(i)\n",
    "                        ad+=1\n",
    "                maski.append(masked_pos)\n",
    "            print('number of mask tok',u)\n",
    "            print('number of seq', ad)\n",
    "            with torch.no_grad():\n",
    "                output = self.model(**input_dict)\n",
    "                base_output = base_model(**input_dict)\n",
    "            last_hidden_state = output[0].squeeze()\n",
    "            base_last_hidden_state = base_output[0].squeeze()\n",
    "            l_o_l_sa = []\n",
    "            base_l_o_l_sa = []\n",
    "            if len(maski) == 1:\n",
    "                masked_pos = maski[0]\n",
    "                for k in masked_pos:\n",
    "                    l_o_l_sa.append(last_hidden_state[k])\n",
    "                    base_l_o_l_sa.append(base_last_hidden_state[k])\n",
    "            else:\n",
    "                for p in range(len(maski)):\n",
    "                    masked_pos = maski[p]\n",
    "                    for k in masked_pos:\n",
    "                        l_o_l_sa.append(last_hidden_state[p][k])\n",
    "                        base_l_o_l_sa.append(base_last_hidden_state[p][k])\n",
    "            sum_state = l_o_l_sa[0]\n",
    "            base_sum_state = base_l_o_l_sa[0]\n",
    "            for i in range(len(l_o_l_sa)):\n",
    "                if i == 0:\n",
    "                    continue\n",
    "                sum_state += l_o_l_sa[i]\n",
    "                base_sum_state += base_l_o_l_sa[i]\n",
    "            yip = len(l_o_l_sa)\n",
    "            sum_state /= yip\n",
    "            base_sum_state /= yip\n",
    "            probs = F.softmax(sum_state, dim=0)\n",
    "            base_probs = F.softmax(base_sum_state, dim=0)\n",
    "            a_lab = y_tok[m]\n",
    "            prob = probs[a_lab]\n",
    "            base_prob = base_probs[a_lab]\n",
    "            log_prob = -1*math.log(prob)\n",
    "            base_log_prob = -1*math.log(base_prob)\n",
    "            sent_pll+=log_prob\n",
    "            base_sent_pll+=base_log_prob\n",
    "            xl = X_init.split()\n",
    "            xxl = []\n",
    "            for p in range(len(xl)):\n",
    "                if xl[p] == self.tokenizer.mask_token:\n",
    "                    if p != 0 and xl[p-1] == self.tokenizer.mask_token:\n",
    "                        xxl.append(xl[p])\n",
    "                        continue\n",
    "                    xxl.append(self.tokenizer.convert_ids_to_tokens(y_tok[m]))\n",
    "                    continue\n",
    "                xxl.append(xl[p])\n",
    "            X_init = \" \".join(xxl)\n",
    "        sent_pll/=num_sub_tokens_label\n",
    "        base_sent_pll/=num_sub_tokens_label\n",
    "        print(\"Sent PLL:\")\n",
    "        print(sent_pll)\n",
    "        print(\"Base Sent PLL:\")\n",
    "        print(base_sent_pll)\n",
    "        print(\"Net % difference:\")\n",
    "        diff = (sent_pll-base_sent_pll)*100/base_sent_pll\n",
    "        print(diff)\n",
    "        tot_pll += sent_pll\n",
    "        base_tot_pll+=base_sent_pll\n",
    "        print()\n",
    "        print()\n",
    "        y = random.choice(variable_names)\n",
    "        print(y)\n",
    "        X_init = X_init1\n",
    "        y_tok = self.tokenizer.encode(y)[1:-1]\n",
    "        nl = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\\d+', y)\n",
    "        lb = ' '.join(nl).lower()\n",
    "        x = self.tokenizer.tokenize(lb)\n",
    "        num_sub_tokens_label = len(x)\n",
    "        X_init = X_init.replace(\"[MASK]\", \" \".join([self.tokenizer.mask_token] * num_sub_tokens_label))\n",
    "        sent_pll = 0.0\n",
    "        base_sent_pll = 0.0\n",
    "        for m in range(num_sub_tokens_label):\n",
    "            print(m)\n",
    "            tokens = self.tokenizer.encode_plus(X_init, add_special_tokens=False,return_tensors='pt')\n",
    "            input_id_chunki = tokens['input_ids'][0].split(510)\n",
    "            input_id_chunks = []\n",
    "            mask_chunks  = []\n",
    "            mask_chunki = tokens['attention_mask'][0].split(510)\n",
    "            for tensor in input_id_chunki:\n",
    "                input_id_chunks.append(tensor)\n",
    "            for tensor in mask_chunki:\n",
    "                mask_chunks.append(tensor)\n",
    "            xi = torch.full((1,), fill_value=101)\n",
    "            yi = torch.full((1,), fill_value=1)\n",
    "            zi = torch.full((1,), fill_value=102)\n",
    "            for r in range(len(input_id_chunks)):\n",
    "                input_id_chunks[r] = torch.cat([xi, input_id_chunks[r]],dim = -1)\n",
    "                input_id_chunks[r] = torch.cat([input_id_chunks[r],zi],dim=-1)\n",
    "                mask_chunks[r] = torch.cat([yi, mask_chunks[r]],dim=-1)\n",
    "                mask_chunks[r] = torch.cat([mask_chunks[r],yi],dim=-1)\n",
    "            di = torch.full((1,), fill_value=0)\n",
    "            for i in range(len(input_id_chunks)):\n",
    "                pad_len = 512 - input_id_chunks[i].shape[0]\n",
    "                if pad_len > 0:\n",
    "                    for p in range(pad_len):\n",
    "                        input_id_chunks[i] = torch.cat([input_id_chunks[i],di],dim=-1)\n",
    "                        mask_chunks[i] = torch.cat([mask_chunks[i],di],dim=-1)\n",
    "            input_ids = torch.stack(input_id_chunks)\n",
    "            attention_mask = torch.stack(mask_chunks)\n",
    "            input_dict = {\n",
    "                'input_ids': input_ids.long(),\n",
    "                'attention_mask': attention_mask.int()\n",
    "            }\n",
    "            maski = []\n",
    "            u = 0\n",
    "            ad = 0\n",
    "            for l in range(len(input_dict['input_ids'])):\n",
    "                masked_pos = []\n",
    "                for i in range(len(input_dict['input_ids'][l])):\n",
    "                    if input_dict['input_ids'][l][i] == 50264: #103\n",
    "                        u+=1\n",
    "                        if i != 0 and input_dict['input_ids'][l][i-1] == 50264:\n",
    "                            continue\n",
    "                        masked_pos.append(i)\n",
    "                        ad+=1\n",
    "                maski.append(masked_pos)\n",
    "            print('number of mask tok',u)\n",
    "            print('number of seq', ad)\n",
    "            with torch.no_grad():\n",
    "                output = self.model(**input_dict)\n",
    "                base_output = base_model(**input_dict)\n",
    "            last_hidden_state = output[0].squeeze()\n",
    "            base_last_hidden_state = base_output[0].squeeze()\n",
    "            l_o_l_sa = []\n",
    "            base_l_o_l_sa = []\n",
    "            if len(maski) == 1:\n",
    "                masked_pos = maski[0]\n",
    "                for k in masked_pos:\n",
    "                    l_o_l_sa.append(last_hidden_state[k])\n",
    "                    base_l_o_l_sa.append(base_last_hidden_state[k])\n",
    "            else:\n",
    "                for p in range(len(maski)):\n",
    "                    masked_pos = maski[p]\n",
    "                    for k in masked_pos:\n",
    "                        l_o_l_sa.append(last_hidden_state[p][k])\n",
    "                        base_l_o_l_sa.append(base_last_hidden_state[p][k])\n",
    "            sum_state = l_o_l_sa[0]\n",
    "            base_sum_state = base_l_o_l_sa[0]\n",
    "            for i in range(len(l_o_l_sa)):\n",
    "                if i == 0:\n",
    "                    continue\n",
    "                sum_state += l_o_l_sa[i]\n",
    "                base_sum_state += base_l_o_l_sa[i]\n",
    "            yip = len(l_o_l_sa)\n",
    "            sum_state /= yip\n",
    "            base_sum_state /= yip\n",
    "            probs = F.softmax(sum_state, dim=0)\n",
    "            base_probs = F.softmax(base_sum_state, dim=0)\n",
    "            a_lab = y_tok[m]\n",
    "            prob = probs[a_lab]\n",
    "            base_prob = base_probs[a_lab]\n",
    "            log_prob = -1*math.log(prob)\n",
    "            base_log_prob = -1*math.log(base_prob)\n",
    "            sent_pll+=log_prob\n",
    "            base_sent_pll+=base_log_prob\n",
    "            xl = X_init.split()\n",
    "            xxl = []\n",
    "            for p in range(len(xl)):\n",
    "                if xl[p] == self.tokenizer.mask_token:\n",
    "                    if p != 0 and xl[p-1] == self.tokenizer.mask_token:\n",
    "                        xxl.append(xl[p])\n",
    "                        continue\n",
    "                    xxl.append(self.tokenizer.convert_ids_to_tokens(y_tok[m]))\n",
    "                    continue\n",
    "                xxl.append(xl[p])\n",
    "            X_init = \" \".join(xxl)\n",
    "        sent_pll/=num_sub_tokens_label\n",
    "        base_sent_pll/=num_sub_tokens_label\n",
    "        print(\"Sent PLL:\")\n",
    "        print(sent_pll)\n",
    "        print(\"Base Sent PLL:\")\n",
    "        print(base_sent_pll)\n",
    "        print(\"Net % difference:\")\n",
    "        diff = (sent_pll-base_sent_pll)*100/base_sent_pll\n",
    "        print(diff)\n",
    "        print()\n",
    "        print(\"******\")\n",
    "        print()\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "bc788ca0",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-09-27T18:12:36.975722Z",
     "start_time": "2023-09-27T18:12:18.467898Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "RobertaForMaskedLM(\n",
       "  (roberta): RobertaModel(\n",
       "    (embeddings): RobertaEmbeddings(\n",
       "      (word_embeddings): Embedding(50265, 768, padding_idx=1)\n",
       "      (position_embeddings): Embedding(514, 768, padding_idx=1)\n",
       "      (token_type_embeddings): Embedding(1, 768)\n",
       "      (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
       "      (dropout): Dropout(p=0.1, inplace=False)\n",
       "    )\n",
       "    (encoder): RobertaEncoder(\n",
       "      (layer): ModuleList(\n",
       "        (0-11): 12 x RobertaLayer(\n",
       "          (attention): RobertaAttention(\n",
       "            (self): RobertaSelfAttention(\n",
       "              (query): Linear(in_features=768, out_features=768, bias=True)\n",
       "              (key): Linear(in_features=768, out_features=768, bias=True)\n",
       "              (value): Linear(in_features=768, out_features=768, bias=True)\n",
       "              (dropout): Dropout(p=0.1, inplace=False)\n",
       "            )\n",
       "            (output): RobertaSelfOutput(\n",
       "              (dense): Linear(in_features=768, out_features=768, bias=True)\n",
       "              (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
       "              (dropout): Dropout(p=0.1, inplace=False)\n",
       "            )\n",
       "          )\n",
       "          (intermediate): RobertaIntermediate(\n",
       "            (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
       "            (intermediate_act_fn): GELUActivation()\n",
       "          )\n",
       "          (output): RobertaOutput(\n",
       "            (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
       "            (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
       "            (dropout): Dropout(p=0.1, inplace=False)\n",
       "          )\n",
       "        )\n",
       "      )\n",
       "    )\n",
       "  )\n",
       "  (lm_head): RobertaLMHead(\n",
       "    (dense): Linear(in_features=768, out_features=768, bias=True)\n",
       "    (layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
       "    (decoder): Linear(in_features=768, out_features=50265, bias=True)\n",
       "  )\n",
       ")"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tokenizer = AutoTokenizer.from_pretrained(\"microsoft/graphcodebert-base\")\n",
    "model = Step1_model()\n",
    "model.load_state_dict(torch.load('var_runs/model_98_3'))\n",
    "base_model = AutoModelForMaskedLM.from_pretrained('microsoft/graphcodebert-base')\n",
    "model.eval()\n",
    "base_model.eval()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "f96328ce",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-09-27T18:15:14.635841Z",
     "start_time": "2023-09-27T18:12:36.980040Z"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\r",
      "  0%|                                                    | 0/50 [00:00<?, ?it/s]"
     ]
    }
   ],
   "source": [
    "myDs=MyDataset('dat.csv')\n",
    "loader=DataLoader(myDs,batch_size=2,shuffle=True)\n",
    "loop = tqdm(loader, leave=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "45333143",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-09-27T18:18:54.349042Z",
     "start_time": "2023-09-27T18:17:34.313070Z"
    },
    "code_folding": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Token indices sequence length is longer than the specified maximum sequence length for this model (7050 > 512). Running this sequence through the model will result in indexing errors\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "stackBefore\n",
      "\n",
      "0\n",
      "number of mask tok 16\n",
      "number of seq 8\n",
      "1\n",
      "number of mask tok 8\n",
      "number of seq 8\n",
      "Sent PLL:\n",
      "3.184066466322467\n",
      "Base Sent PLL:\n",
      "3.184066466322467\n",
      "Net % difference:\n",
      "0.0\n",
      "\n",
      "\n",
      "distance\n",
      "0\n",
      "number of mask tok 8\n",
      "number of seq 8\n",
      "Sent PLL:\n",
      "22.091890736746276\n",
      "Base Sent PLL:\n",
      "22.091890736746276\n",
      "Net % difference:\n",
      "0.0\n",
      "\n",
      "******\n",
      "\n",
      "records\n",
      "\n",
      "0\n",
      "number of mask tok 4\n",
      "number of seq 2\n",
      "1\n",
      "number of mask tok 2\n",
      "number of seq 2\n",
      "Sent PLL:\n",
      "4.304520906089483\n",
      "Base Sent PLL:\n",
      "4.304520906089483\n",
      "Net % difference:\n",
      "0.0\n",
      "\n",
      "\n",
      "valueB\n",
      "0\n",
      "number of mask tok 4\n",
      "number of seq 2\n",
      "1\n",
      "number of mask tok 2\n",
      "number of seq 2\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\r",
      "  2%|▊                                        | 1/50 [03:31<2:52:22, 211.08s/it]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sent PLL:\n",
      "9.457522688945344\n",
      "Base Sent PLL:\n",
      "9.457522688945344\n",
      "Net % difference:\n",
      "0.0\n",
      "\n",
      "******\n",
      "\n",
      "stackEntry\n",
      "\n",
      "0\n",
      "number of mask tok 30\n",
      "number of seq 15\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "  2%|▊                                        | 1/50 [03:38<2:58:06, 218.09s/it]\n"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[6], line 18\u001b[0m\n\u001b[1;32m     16\u001b[0m         l\u001b[38;5;241m.\u001b[39mappend(inputs[\u001b[38;5;241m0\u001b[39m][i])\n\u001b[1;32m     17\u001b[0m         l\u001b[38;5;241m.\u001b[39mappend(inputs[\u001b[38;5;241m1\u001b[39m][i])\n\u001b[0;32m---> 18\u001b[0m         \u001b[43mmodel\u001b[49m\u001b[43m(\u001b[49m\u001b[43ml\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     19\u001b[0m \u001b[38;5;66;03m#         X_init1 = inputs[0][i]\u001b[39;00m\n\u001b[1;32m     20\u001b[0m \u001b[38;5;66;03m#         X_init = inputs[0][i]\u001b[39;00m\n\u001b[1;32m     21\u001b[0m \u001b[38;5;66;03m#         y = inputs[1][i]\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    262\u001b[0m \u001b[38;5;66;03m#     except:\u001b[39;00m\n\u001b[1;32m    263\u001b[0m \u001b[38;5;66;03m#         continue\u001b[39;00m\n\u001b[1;32m    264\u001b[0m tot_pll\u001b[38;5;241m/\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mlen\u001b[39m(myDs)\n",
      "File \u001b[0;32m~/miniconda3/envs/tensorflown/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m   1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m   1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m   1499\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m   1500\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m   1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
      "Cell \u001b[0;32mIn[3], line 152\u001b[0m, in \u001b[0;36mStep1_model.forward\u001b[0;34m(self, mapi)\u001b[0m\n\u001b[1;32m    150\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mno_grad():\n\u001b[1;32m    151\u001b[0m     output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39minput_dict)\n\u001b[0;32m--> 152\u001b[0m     base_output \u001b[38;5;241m=\u001b[39m \u001b[43mbase_model\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minput_dict\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    153\u001b[0m last_hidden_state \u001b[38;5;241m=\u001b[39m output[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39msqueeze()\n\u001b[1;32m    154\u001b[0m base_last_hidden_state \u001b[38;5;241m=\u001b[39m base_output[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39msqueeze()\n",
      "File \u001b[0;32m~/miniconda3/envs/tensorflown/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m   1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m   1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m   1499\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m   1500\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m   1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
      "File \u001b[0;32m~/miniconda3/envs/tensorflown/lib/python3.10/site-packages/transformers/models/roberta/modeling_roberta.py:1082\u001b[0m, in \u001b[0;36mRobertaForMaskedLM.forward\u001b[0;34m(self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, encoder_hidden_states, encoder_attention_mask, labels, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m   1072\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124mr\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m   1073\u001b[0m \u001b[38;5;124;03mlabels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):\u001b[39;00m\n\u001b[1;32m   1074\u001b[0m \u001b[38;5;124;03m    Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   1078\u001b[0m \u001b[38;5;124;03m    Used to hide legacy arguments that have been deprecated.\u001b[39;00m\n\u001b[1;32m   1079\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m   1080\u001b[0m return_dict \u001b[38;5;241m=\u001b[39m return_dict \u001b[38;5;28;01mif\u001b[39;00m return_dict \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig\u001b[38;5;241m.\u001b[39muse_return_dict\n\u001b[0;32m-> 1082\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mroberta\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1083\u001b[0m \u001b[43m    \u001b[49m\u001b[43minput_ids\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1084\u001b[0m \u001b[43m    \u001b[49m\u001b[43mattention_mask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattention_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1085\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtoken_type_ids\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken_type_ids\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1086\u001b[0m \u001b[43m    \u001b[49m\u001b[43mposition_ids\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mposition_ids\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1087\u001b[0m \u001b[43m    \u001b[49m\u001b[43mhead_mask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhead_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1088\u001b[0m \u001b[43m    \u001b[49m\u001b[43minputs_embeds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs_embeds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1089\u001b[0m \u001b[43m    \u001b[49m\u001b[43mencoder_hidden_states\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mencoder_hidden_states\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1090\u001b[0m \u001b[43m    \u001b[49m\u001b[43mencoder_attention_mask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mencoder_attention_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1091\u001b[0m \u001b[43m    \u001b[49m\u001b[43moutput_attentions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_attentions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1092\u001b[0m \u001b[43m    \u001b[49m\u001b[43moutput_hidden_states\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_hidden_states\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1093\u001b[0m \u001b[43m    \u001b[49m\u001b[43mreturn_dict\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_dict\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1094\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1095\u001b[0m sequence_output \u001b[38;5;241m=\u001b[39m outputs[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m   1096\u001b[0m prediction_scores \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlm_head(sequence_output)\n",
      "File \u001b[0;32m~/miniconda3/envs/tensorflown/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m   1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m   1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m   1499\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m   1500\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m   1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
      "File \u001b[0;32m~/miniconda3/envs/tensorflown/lib/python3.10/site-packages/transformers/models/roberta/modeling_roberta.py:844\u001b[0m, in \u001b[0;36mRobertaModel.forward\u001b[0;34m(self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, encoder_hidden_states, encoder_attention_mask, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m    835\u001b[0m head_mask \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mget_head_mask(head_mask, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig\u001b[38;5;241m.\u001b[39mnum_hidden_layers)\n\u001b[1;32m    837\u001b[0m embedding_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39membeddings(\n\u001b[1;32m    838\u001b[0m     input_ids\u001b[38;5;241m=\u001b[39minput_ids,\n\u001b[1;32m    839\u001b[0m     position_ids\u001b[38;5;241m=\u001b[39mposition_ids,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    842\u001b[0m     past_key_values_length\u001b[38;5;241m=\u001b[39mpast_key_values_length,\n\u001b[1;32m    843\u001b[0m )\n\u001b[0;32m--> 844\u001b[0m encoder_outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mencoder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    845\u001b[0m \u001b[43m    \u001b[49m\u001b[43membedding_output\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    846\u001b[0m \u001b[43m    \u001b[49m\u001b[43mattention_mask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextended_attention_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    847\u001b[0m \u001b[43m    \u001b[49m\u001b[43mhead_mask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhead_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    848\u001b[0m \u001b[43m    \u001b[49m\u001b[43mencoder_hidden_states\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mencoder_hidden_states\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    849\u001b[0m \u001b[43m    \u001b[49m\u001b[43mencoder_attention_mask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mencoder_extended_attention_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    850\u001b[0m \u001b[43m    \u001b[49m\u001b[43mpast_key_values\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpast_key_values\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    851\u001b[0m \u001b[43m    \u001b[49m\u001b[43muse_cache\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_cache\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    852\u001b[0m \u001b[43m    \u001b[49m\u001b[43moutput_attentions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_attentions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    853\u001b[0m \u001b[43m    \u001b[49m\u001b[43moutput_hidden_states\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_hidden_states\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    854\u001b[0m \u001b[43m    \u001b[49m\u001b[43mreturn_dict\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_dict\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    855\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    856\u001b[0m sequence_output \u001b[38;5;241m=\u001b[39m encoder_outputs[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m    857\u001b[0m pooled_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpooler(sequence_output) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpooler \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n",
      "File \u001b[0;32m~/miniconda3/envs/tensorflown/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m   1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m   1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m   1499\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m   1500\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m   1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
      "File \u001b[0;32m~/miniconda3/envs/tensorflown/lib/python3.10/site-packages/transformers/models/roberta/modeling_roberta.py:529\u001b[0m, in \u001b[0;36mRobertaEncoder.forward\u001b[0;34m(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m    520\u001b[0m     layer_outputs \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mutils\u001b[38;5;241m.\u001b[39mcheckpoint\u001b[38;5;241m.\u001b[39mcheckpoint(\n\u001b[1;32m    521\u001b[0m         create_custom_forward(layer_module),\n\u001b[1;32m    522\u001b[0m         hidden_states,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    526\u001b[0m         encoder_attention_mask,\n\u001b[1;32m    527\u001b[0m     )\n\u001b[1;32m    528\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 529\u001b[0m     layer_outputs \u001b[38;5;241m=\u001b[39m \u001b[43mlayer_module\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    530\u001b[0m \u001b[43m        \u001b[49m\u001b[43mhidden_states\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    531\u001b[0m \u001b[43m        \u001b[49m\u001b[43mattention_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    532\u001b[0m \u001b[43m        \u001b[49m\u001b[43mlayer_head_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    533\u001b[0m \u001b[43m        \u001b[49m\u001b[43mencoder_hidden_states\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    534\u001b[0m \u001b[43m        \u001b[49m\u001b[43mencoder_attention_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    535\u001b[0m \u001b[43m        \u001b[49m\u001b[43mpast_key_value\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    536\u001b[0m \u001b[43m        \u001b[49m\u001b[43moutput_attentions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    537\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    539\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m layer_outputs[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m    540\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m use_cache:\n",
      "File \u001b[0;32m~/miniconda3/envs/tensorflown/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m   1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m   1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m   1499\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m   1500\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m   1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
      "File \u001b[0;32m~/miniconda3/envs/tensorflown/lib/python3.10/site-packages/transformers/models/roberta/modeling_roberta.py:413\u001b[0m, in \u001b[0;36mRobertaLayer.forward\u001b[0;34m(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions)\u001b[0m\n\u001b[1;32m    401\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mforward\u001b[39m(\n\u001b[1;32m    402\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m    403\u001b[0m     hidden_states: torch\u001b[38;5;241m.\u001b[39mTensor,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    410\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Tuple[torch\u001b[38;5;241m.\u001b[39mTensor]:\n\u001b[1;32m    411\u001b[0m     \u001b[38;5;66;03m# decoder uni-directional self-attention cached key/values tuple is at positions 1,2\u001b[39;00m\n\u001b[1;32m    412\u001b[0m     self_attn_past_key_value \u001b[38;5;241m=\u001b[39m past_key_value[:\u001b[38;5;241m2\u001b[39m] \u001b[38;5;28;01mif\u001b[39;00m past_key_value \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m--> 413\u001b[0m     self_attention_outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mattention\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    414\u001b[0m \u001b[43m        \u001b[49m\u001b[43mhidden_states\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    415\u001b[0m \u001b[43m        \u001b[49m\u001b[43mattention_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    416\u001b[0m \u001b[43m        \u001b[49m\u001b[43mhead_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    417\u001b[0m \u001b[43m        \u001b[49m\u001b[43moutput_attentions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_attentions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    418\u001b[0m \u001b[43m        \u001b[49m\u001b[43mpast_key_value\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mself_attn_past_key_value\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    419\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    420\u001b[0m     attention_output \u001b[38;5;241m=\u001b[39m self_attention_outputs[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m    422\u001b[0m     \u001b[38;5;66;03m# if decoder, the last output is tuple of self-attn cache\u001b[39;00m\n",
      "File \u001b[0;32m~/miniconda3/envs/tensorflown/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m   1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m   1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m   1499\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m   1500\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m   1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
      "File \u001b[0;32m~/miniconda3/envs/tensorflown/lib/python3.10/site-packages/transformers/models/roberta/modeling_roberta.py:340\u001b[0m, in \u001b[0;36mRobertaAttention.forward\u001b[0;34m(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions)\u001b[0m\n\u001b[1;32m    330\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mforward\u001b[39m(\n\u001b[1;32m    331\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m    332\u001b[0m     hidden_states: torch\u001b[38;5;241m.\u001b[39mTensor,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    338\u001b[0m     output_attentions: Optional[\u001b[38;5;28mbool\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[1;32m    339\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Tuple[torch\u001b[38;5;241m.\u001b[39mTensor]:\n\u001b[0;32m--> 340\u001b[0m     self_outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mself\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    341\u001b[0m \u001b[43m        \u001b[49m\u001b[43mhidden_states\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    342\u001b[0m \u001b[43m        \u001b[49m\u001b[43mattention_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    343\u001b[0m \u001b[43m        \u001b[49m\u001b[43mhead_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    344\u001b[0m \u001b[43m        \u001b[49m\u001b[43mencoder_hidden_states\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    345\u001b[0m \u001b[43m        \u001b[49m\u001b[43mencoder_attention_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    346\u001b[0m \u001b[43m        \u001b[49m\u001b[43mpast_key_value\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    347\u001b[0m \u001b[43m        \u001b[49m\u001b[43moutput_attentions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    348\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    349\u001b[0m     attention_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moutput(self_outputs[\u001b[38;5;241m0\u001b[39m], hidden_states)\n\u001b[1;32m    350\u001b[0m     outputs \u001b[38;5;241m=\u001b[39m (attention_output,) \u001b[38;5;241m+\u001b[39m self_outputs[\u001b[38;5;241m1\u001b[39m:]  \u001b[38;5;66;03m# add attentions if we output them\u001b[39;00m\n",
      "File \u001b[0;32m~/miniconda3/envs/tensorflown/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m   1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m   1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m   1499\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m   1500\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m   1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
      "File \u001b[0;32m~/miniconda3/envs/tensorflown/lib/python3.10/site-packages/transformers/models/roberta/modeling_roberta.py:236\u001b[0m, in \u001b[0;36mRobertaSelfAttention.forward\u001b[0;34m(self, hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions)\u001b[0m\n\u001b[1;32m    233\u001b[0m     past_key_value \u001b[38;5;241m=\u001b[39m (key_layer, value_layer)\n\u001b[1;32m    235\u001b[0m \u001b[38;5;66;03m# Take the dot product between \"query\" and \"key\" to get the raw attention scores.\u001b[39;00m\n\u001b[0;32m--> 236\u001b[0m attention_scores \u001b[38;5;241m=\u001b[39m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmatmul\u001b[49m\u001b[43m(\u001b[49m\u001b[43mquery_layer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkey_layer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtranspose\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    238\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mposition_embedding_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrelative_key\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mposition_embedding_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrelative_key_query\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m    239\u001b[0m     query_length, key_length \u001b[38;5;241m=\u001b[39m query_layer\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m2\u001b[39m], key_layer\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m2\u001b[39m]\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "tot_pll = 0.0\n",
    "base_tot_pll = 0.0\n",
    "variable_names = [\n",
    "    'x', 'y', 'myVariable', 'dataPoint', 'randomNumber', 'userAge', 'resultValue', 'inputValue', 'tempValue', 'indexCounter', \n",
    "    'itemPrice', 'userName', 'testScore', 'acceleration', 'productCount', 'errorMargin', 'piValue', 'sensorReading', \n",
    "    'currentTemperature', 'velocityVector', 'variable1', 'variable2', 'valueA', 'valueB', 'counter', 'flag', 'total', \n",
    "    'average', 'valueX', 'valueY', 'valueZ', 'price', 'quantity', 'name', 'age', 'score', 'weight', 'height', 'distance', \n",
    "    'time', 'radius', 'width', 'length', 'temperature', 'pressure', 'humidity', 'voltage', 'current', 'resistance'\n",
    "]\n",
    "\n",
    "for batch in loop:\n",
    "    inputs = batch\n",
    "    try:\n",
    "        for i in range(len(inputs[0])):\n",
    "            l = []\n",
    "            l.append(inputs[0][i])\n",
    "            l.append(inputs[1][i])\n",
    "            model(l)\n",
    "    except:\n",
    "        continue\n",
    "\n",
    "tot_pll/=len(myDs)\n",
    "print('Total PLL per sentence: ')\n",
    "print(tot_pll)\n",
    "base_tot_pll/=len(myDs)\n",
    "print('Total Base PLL per sentence: ')\n",
    "print(base_tot_pll)\n",
    "print(\"Net % difference average:\")\n",
    "tot_diff = (tot_pll-base_tot_pll)*100/base_tot_pll\n",
    "print(tot_diff)\n",
    "  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "da79bcc2",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.10 (tensorflown)",
   "language": "python",
   "name": "tensorflown"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}