|
|
|
|
|
|
|
|
|
|
|
|
|
import pandas as pd |
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from torch.nn import init, MarginRankingLoss |
|
from transformers import BertModel, RobertaModel |
|
from transformers import BertTokenizer, RobertaTokenizer |
|
from torch.optim import Adam |
|
from distutils.version import LooseVersion |
|
from torch.utils.data import Dataset, DataLoader |
|
from torch.utils.tensorboard import SummaryWriter |
|
from datetime import datetime |
|
from torch.autograd import Variable |
|
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM, AutoTokenizer |
|
import torch.optim as optim |
|
from torch.distributions import Categorical |
|
import random |
|
from transformers import AutoModelForMaskedLM, BertForMaskedLM, AdamW |
|
from transformers import BertTokenizer |
|
from tqdm import tqdm |
|
import matplotlib.pyplot as plt |
|
from transformers import XLMRobertaTokenizer |
|
import os |
|
import csv |
|
from sklearn.model_selection import train_test_split |
|
import nltk |
|
from collections import defaultdict |
|
from nltk.tokenize import word_tokenize |
|
from nltk import pos_tag |
|
from nltk.tokenize import word_tokenize |
|
import math |
|
from nltk.corpus import words |
|
from sklearn.model_selection import train_test_split |
|
import random |
|
import re |
|
import random |
|
|
|
|
|
|
|
|
|
|
|
class MyDataset(Dataset): |
|
def __init__(self,file_name): |
|
df1 = pd.read_csv(file_name) |
|
df1 = df1[200:300] |
|
df1 = df1.fillna("") |
|
res = df1['X'].to_numpy() |
|
self.X_list = res |
|
self.y_list = df1['y'].to_numpy() |
|
def __len__(self): |
|
return len(self.X_list) |
|
def __getitem__(self,idx): |
|
mapi = [] |
|
mapi.append(self.X_list[idx]) |
|
mapi.append(self.y_list[idx]) |
|
return mapi |
|
|
|
|
|
|
|
|
|
|
|
class Step1_model(nn.Module): |
|
def __init__(self, hidden_size=512): |
|
super(Step1_model, self).__init__() |
|
self.hidden_size = hidden_size |
|
self.model = AutoModelForMaskedLM.from_pretrained('microsoft/graphcodebert-base') |
|
self.tokenizer = AutoTokenizer.from_pretrained("microsoft/graphcodebert-base") |
|
self.config = AutoConfig.from_pretrained("microsoft/graphcodebert-base") |
|
self.linear_layer = nn.Linear(self.model.config.vocab_size, self.model.config.vocab_size) |
|
def foo (self,data): |
|
result = [] |
|
if type(data) == tuple: |
|
return data[1] |
|
if type(data) == list: |
|
for inner in data: |
|
result.append(foo(inner)) |
|
res = [] |
|
for a in result[0]: |
|
res.append(a[:2]) |
|
return res |
|
def loss_func1(self, word, y): |
|
if word =='NA': |
|
return torch.full((1,), fill_value=100) |
|
try: |
|
pred_list = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\d+', word) |
|
target_list = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\d+', y) |
|
pred_tag = self.foo(nltk.pos_tag(pred_list)) |
|
target_tag = self.foo(nltk.pos_tag(target_list)) |
|
str1 = ' '.join(pred_tag) |
|
str2 = ' '.join(target_tag) |
|
distance = Levenshtein.distance(str1, str2) |
|
dist = torch.Tensor([distance]) |
|
except: |
|
dist = torch.Tensor([2*len(target_list)]) |
|
return dist |
|
def loss_func2(self, word, y): |
|
if word =='NA': |
|
return torch.full((1,), fill_value=100) |
|
nlp = en_core_web_sm.load() |
|
pred_list = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\d+', word) |
|
target_list = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\d+', y) |
|
try: |
|
str1 = ' '.join(pred_list) |
|
str2 = ' '.join(target_list) |
|
tokens1 = nlp(str1) |
|
tokens2 = nlp(str2) |
|
embedding1 = sum(token.vector for token in tokens1) / len(tokens1) |
|
embedding2 = sum(token.vector for token in tokens2) / len(tokens2) |
|
w1= LA.norm(embedding1) |
|
w2= LA.norm(embedding2) |
|
distance = 1 - (embedding1.dot(embedding2) / (w1 * w2)) |
|
dist = torch.Tensor([distance]) |
|
except: |
|
dist = torch.Tensor([1]) |
|
return dist |
|
def forward(self, mapi): |
|
global variable_names |
|
global base_model |
|
global tot_pll |
|
global base_tot_pll |
|
X_init1 = mapi[0] |
|
X_init = mapi[0] |
|
y = mapi[1] |
|
print(y) |
|
y_tok = self.tokenizer.encode(y)[1:-1] |
|
nl = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\d+', y) |
|
lb = ' '.join(nl).lower() |
|
x = self.tokenizer.tokenize(lb) |
|
num_sub_tokens_label = len(x) |
|
X_init = X_init.replace("[MASK]", " ".join([self.tokenizer.mask_token] * num_sub_tokens_label)) |
|
sent_pll = 0.0 |
|
base_sent_pll = 0.0 |
|
for m in range(num_sub_tokens_label): |
|
print(m) |
|
tokens = self.tokenizer.encode_plus(X_init, add_special_tokens=False,return_tensors='pt') |
|
input_id_chunki = tokens['input_ids'][0].split(510) |
|
input_id_chunks = [] |
|
mask_chunks = [] |
|
mask_chunki = tokens['attention_mask'][0].split(510) |
|
for tensor in input_id_chunki: |
|
input_id_chunks.append(tensor) |
|
for tensor in mask_chunki: |
|
mask_chunks.append(tensor) |
|
xi = torch.full((1,), fill_value=101) |
|
yi = torch.full((1,), fill_value=1) |
|
zi = torch.full((1,), fill_value=102) |
|
for r in range(len(input_id_chunks)): |
|
input_id_chunks[r] = torch.cat([xi, input_id_chunks[r]],dim = -1) |
|
input_id_chunks[r] = torch.cat([input_id_chunks[r],zi],dim=-1) |
|
mask_chunks[r] = torch.cat([yi, mask_chunks[r]],dim=-1) |
|
mask_chunks[r] = torch.cat([mask_chunks[r],yi],dim=-1) |
|
di = torch.full((1,), fill_value=0) |
|
for i in range(len(input_id_chunks)): |
|
pad_len = 512 - input_id_chunks[i].shape[0] |
|
if pad_len > 0: |
|
for p in range(pad_len): |
|
input_id_chunks[i] = torch.cat([input_id_chunks[i],di],dim=-1) |
|
mask_chunks[i] = torch.cat([mask_chunks[i],di],dim=-1) |
|
input_ids = torch.stack(input_id_chunks) |
|
attention_mask = torch.stack(mask_chunks) |
|
input_dict = { |
|
'input_ids': input_ids.long(), |
|
'attention_mask': attention_mask.int() |
|
} |
|
maski = [] |
|
u = 0 |
|
ad = 0 |
|
for l in range(len(input_dict['input_ids'])): |
|
masked_pos = [] |
|
for i in range(len(input_dict['input_ids'][l])): |
|
if input_dict['input_ids'][l][i] == 50264: |
|
u+=1 |
|
if i != 0 and input_dict['input_ids'][l][i-1] == 50264: |
|
continue |
|
masked_pos.append(i) |
|
ad+=1 |
|
maski.append(masked_pos) |
|
print('number of mask tok',u) |
|
print('number of seq', ad) |
|
with torch.no_grad(): |
|
output = self.model(**input_dict) |
|
base_output = base_model(**input_dict) |
|
last_hidden_state = output[0].squeeze() |
|
base_last_hidden_state = base_output[0].squeeze() |
|
l_o_l_sa = [] |
|
base_l_o_l_sa = [] |
|
if len(maski) == 1: |
|
masked_pos = maski[0] |
|
for k in masked_pos: |
|
l_o_l_sa.append(last_hidden_state[k]) |
|
base_l_o_l_sa.append(base_last_hidden_state[k]) |
|
else: |
|
for p in range(len(maski)): |
|
masked_pos = maski[p] |
|
for k in masked_pos: |
|
l_o_l_sa.append(last_hidden_state[p][k]) |
|
base_l_o_l_sa.append(base_last_hidden_state[p][k]) |
|
sum_state = l_o_l_sa[0] |
|
base_sum_state = base_l_o_l_sa[0] |
|
for i in range(len(l_o_l_sa)): |
|
if i == 0: |
|
continue |
|
sum_state += l_o_l_sa[i] |
|
base_sum_state += base_l_o_l_sa[i] |
|
yip = len(l_o_l_sa) |
|
sum_state /= yip |
|
base_sum_state /= yip |
|
probs = F.softmax(sum_state, dim=0) |
|
base_probs = F.softmax(base_sum_state, dim=0) |
|
a_lab = y_tok[m] |
|
prob = probs[a_lab] |
|
base_prob = base_probs[a_lab] |
|
log_prob = -1*math.log(prob) |
|
base_log_prob = -1*math.log(base_prob) |
|
sent_pll+=log_prob |
|
base_sent_pll+=base_log_prob |
|
xl = X_init.split() |
|
xxl = [] |
|
for p in range(len(xl)): |
|
if xl[p] == self.tokenizer.mask_token: |
|
if p != 0 and xl[p-1] == self.tokenizer.mask_token: |
|
xxl.append(xl[p]) |
|
continue |
|
xxl.append(self.tokenizer.convert_ids_to_tokens(y_tok[m])) |
|
continue |
|
xxl.append(xl[p]) |
|
X_init = " ".join(xxl) |
|
sent_pll/=num_sub_tokens_label |
|
base_sent_pll/=num_sub_tokens_label |
|
print("Sent PLL:") |
|
print(sent_pll) |
|
print("Base Sent PLL:") |
|
print(base_sent_pll) |
|
print("Net % difference:") |
|
diff = (sent_pll-base_sent_pll)*100/base_sent_pll |
|
print(diff) |
|
tot_pll += sent_pll |
|
base_tot_pll+=base_sent_pll |
|
print() |
|
print() |
|
y = random.choice(variable_names) |
|
print(y) |
|
X_init = X_init1 |
|
y_tok = self.tokenizer.encode(y)[1:-1] |
|
nl = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\d+', y) |
|
lb = ' '.join(nl).lower() |
|
x = self.tokenizer.tokenize(lb) |
|
num_sub_tokens_label = len(x) |
|
X_init = X_init.replace("[MASK]", " ".join([self.tokenizer.mask_token] * num_sub_tokens_label)) |
|
sent_pll = 0.0 |
|
base_sent_pll = 0.0 |
|
for m in range(num_sub_tokens_label): |
|
print(m) |
|
tokens = self.tokenizer.encode_plus(X_init, add_special_tokens=False,return_tensors='pt') |
|
input_id_chunki = tokens['input_ids'][0].split(510) |
|
input_id_chunks = [] |
|
mask_chunks = [] |
|
mask_chunki = tokens['attention_mask'][0].split(510) |
|
for tensor in input_id_chunki: |
|
input_id_chunks.append(tensor) |
|
for tensor in mask_chunki: |
|
mask_chunks.append(tensor) |
|
xi = torch.full((1,), fill_value=101) |
|
yi = torch.full((1,), fill_value=1) |
|
zi = torch.full((1,), fill_value=102) |
|
for r in range(len(input_id_chunks)): |
|
input_id_chunks[r] = torch.cat([xi, input_id_chunks[r]],dim = -1) |
|
input_id_chunks[r] = torch.cat([input_id_chunks[r],zi],dim=-1) |
|
mask_chunks[r] = torch.cat([yi, mask_chunks[r]],dim=-1) |
|
mask_chunks[r] = torch.cat([mask_chunks[r],yi],dim=-1) |
|
di = torch.full((1,), fill_value=0) |
|
for i in range(len(input_id_chunks)): |
|
pad_len = 512 - input_id_chunks[i].shape[0] |
|
if pad_len > 0: |
|
for p in range(pad_len): |
|
input_id_chunks[i] = torch.cat([input_id_chunks[i],di],dim=-1) |
|
mask_chunks[i] = torch.cat([mask_chunks[i],di],dim=-1) |
|
input_ids = torch.stack(input_id_chunks) |
|
attention_mask = torch.stack(mask_chunks) |
|
input_dict = { |
|
'input_ids': input_ids.long(), |
|
'attention_mask': attention_mask.int() |
|
} |
|
maski = [] |
|
u = 0 |
|
ad = 0 |
|
for l in range(len(input_dict['input_ids'])): |
|
masked_pos = [] |
|
for i in range(len(input_dict['input_ids'][l])): |
|
if input_dict['input_ids'][l][i] == 50264: |
|
u+=1 |
|
if i != 0 and input_dict['input_ids'][l][i-1] == 50264: |
|
continue |
|
masked_pos.append(i) |
|
ad+=1 |
|
maski.append(masked_pos) |
|
print('number of mask tok',u) |
|
print('number of seq', ad) |
|
with torch.no_grad(): |
|
output = self.model(**input_dict) |
|
base_output = base_model(**input_dict) |
|
last_hidden_state = output[0].squeeze() |
|
base_last_hidden_state = base_output[0].squeeze() |
|
l_o_l_sa = [] |
|
base_l_o_l_sa = [] |
|
if len(maski) == 1: |
|
masked_pos = maski[0] |
|
for k in masked_pos: |
|
l_o_l_sa.append(last_hidden_state[k]) |
|
base_l_o_l_sa.append(base_last_hidden_state[k]) |
|
else: |
|
for p in range(len(maski)): |
|
masked_pos = maski[p] |
|
for k in masked_pos: |
|
l_o_l_sa.append(last_hidden_state[p][k]) |
|
base_l_o_l_sa.append(base_last_hidden_state[p][k]) |
|
sum_state = l_o_l_sa[0] |
|
base_sum_state = base_l_o_l_sa[0] |
|
for i in range(len(l_o_l_sa)): |
|
if i == 0: |
|
continue |
|
sum_state += l_o_l_sa[i] |
|
base_sum_state += base_l_o_l_sa[i] |
|
yip = len(l_o_l_sa) |
|
sum_state /= yip |
|
base_sum_state /= yip |
|
probs = F.softmax(sum_state, dim=0) |
|
base_probs = F.softmax(base_sum_state, dim=0) |
|
a_lab = y_tok[m] |
|
prob = probs[a_lab] |
|
base_prob = base_probs[a_lab] |
|
log_prob = -1*math.log(prob) |
|
base_log_prob = -1*math.log(base_prob) |
|
sent_pll+=log_prob |
|
base_sent_pll+=base_log_prob |
|
xl = X_init.split() |
|
xxl = [] |
|
for p in range(len(xl)): |
|
if xl[p] == self.tokenizer.mask_token: |
|
if p != 0 and xl[p-1] == self.tokenizer.mask_token: |
|
xxl.append(xl[p]) |
|
continue |
|
xxl.append(self.tokenizer.convert_ids_to_tokens(y_tok[m])) |
|
continue |
|
xxl.append(xl[p]) |
|
X_init = " ".join(xxl) |
|
sent_pll/=num_sub_tokens_label |
|
base_sent_pll/=num_sub_tokens_label |
|
print("Sent PLL:") |
|
print(sent_pll) |
|
print("Base Sent PLL:") |
|
print(base_sent_pll) |
|
print("Net % difference:") |
|
diff = (sent_pll-base_sent_pll)*100/base_sent_pll |
|
print(diff) |
|
print() |
|
print("******") |
|
print() |
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/graphcodebert-base") |
|
model = Step1_model() |
|
model.load_state_dict(torch.load('var_runs/model_98_3')) |
|
base_model = AutoModelForMaskedLM.from_pretrained('microsoft/graphcodebert-base') |
|
model.eval() |
|
base_model.eval() |
|
|
|
|
|
|
|
|
|
|
|
myDs=MyDataset('dat.csv') |
|
loader=DataLoader(myDs,batch_size=2,shuffle=True) |
|
loop = tqdm(loader, leave=True) |
|
|
|
|
|
|
|
|
|
|
|
tot_pll = 0.0 |
|
base_tot_pll = 0.0 |
|
variable_names = [ |
|
'x', 'y', 'myVariable', 'dataPoint', 'randomNumber', 'userAge', 'resultValue', 'inputValue', 'tempValue', 'indexCounter', |
|
'itemPrice', 'userName', 'testScore', 'acceleration', 'productCount', 'errorMargin', 'piValue', 'sensorReading', |
|
'currentTemperature', 'velocityVector', 'variable1', 'variable2', 'valueA', 'valueB', 'counter', 'flag', 'total', |
|
'average', 'valueX', 'valueY', 'valueZ', 'price', 'quantity', 'name', 'age', 'score', 'weight', 'height', 'distance', |
|
'time', 'radius', 'width', 'length', 'temperature', 'pressure', 'humidity', 'voltage', 'current', 'resistance' |
|
] |
|
|
|
for batch in loop: |
|
inputs = batch |
|
try: |
|
for i in range(len(inputs[0])): |
|
l = [] |
|
l.append(inputs[0][i]) |
|
l.append(inputs[1][i]) |
|
model(l) |
|
except: |
|
continue |
|
|
|
tot_pll/=len(myDs) |
|
print('Total PLL per sentence: ') |
|
print(tot_pll) |
|
base_tot_pll/=len(myDs) |
|
print('Total Base PLL per sentence: ') |
|
print(base_tot_pll) |
|
print("Net % difference average:") |
|
tot_diff = (tot_pll-base_tot_pll)*100/base_tot_pll |
|
print(tot_diff) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|