File size: 3,162 Bytes
fbaf849
 
 
f2a01d8
60144e1
 
 
 
 
 
 
c81e4a6
 
47731f4
 
c81e4a6
47731f4
 
f2a01d8
c81e4a6
 
 
f2a01d8
 
60144e1
 
35d88f7
 
c81e4a6
35d88f7
 
 
c81e4a6
35d88f7
c81e4a6
35d88f7
c81e4a6
35d88f7
 
 
 
 
 
c81e4a6
35d88f7
c81e4a6
35d88f7
c81e4a6
35d88f7
 
c81e4a6
35d88f7
 
 
c81e4a6
35d88f7
c81e4a6
35d88f7
c81e4a6
35d88f7
 
c81e4a6
35d88f7
 
 
c81e4a6
35d88f7
c81e4a6
35d88f7
c81e4a6
35d88f7
 
 
c81e4a6
35d88f7
 
 
c81e4a6
35d88f7
c81e4a6
35d88f7
 
 
c81e4a6
35d88f7
 
 
c81e4a6
35d88f7
c81e4a6
35d88f7
 
 
 
 
 
c81e4a6
35d88f7
c81e4a6
35d88f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
license: apache-2.0
---

This repo offers a set of fairseq roberta based models fine tuned to specific NLP tasks.
These models are:
- Small
- Easy to host on T4 or V100
- 100x faster than using LLMs for similar tasks
- Easy to fine tune

All the models below were trained at Nlmatics Corp. from 2019-2023 with base model from: https://github.com/facebookresearch/fairseq/blob/main/examples/roberta/README.md 

### To run the models:
Use https://github.com/nlmatics/nlm-model-service

### To acccess the models 
Use https://github.com/nlmatics/nlm-utils 

### To train the models
TBD

## List of Models

Click on each model to see details:

### roberta.large.boolq

*Location:* [roberta.large.boolq](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.boolq)  

Trained with MNLI + Boolq

*Trained by:* Evan Li

*Application:* Given a passage and a question, answer the question with yes, no or unsure.

*Training Process:* https://blogs.nlmatics.com/2020/03/12/Boolean-Question-Answering-with-Neutral-Labels.html

### roberta.large.qa
See folder: [roberta.large.qa](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.qa)  

Trained with SQuAD 2.0 + Custom Dataset preferring shorter spans better suited for data extraction

*Trained by:* Ambika Sukla

*Application:* Given a passage and a question, pick the shortest span from the passage that answers the question

*Training Process:* start, end location head on the top of Roberta Base

### roberta.large.stsb
*See folder:* [roberta.large.stsb](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.stsb)

Trained with STSB dataset

*Trained by:* Meta/Fairseq

*Application:* Given two passages, return a score beteen 0 and 1 to evaluate their similarity

*Training Process:* regression head on top of Roberta Base

### roberta.large.phraseqa
*See folder:* [roberta.large.phraseqa](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.phraseqa)

Trained with Roberta 2.0 with the question words removed from the question

*Trained By:* Batya Stein

*Application:* Given a passage and phrase (key), extract a value from the passage 

*Training Process:* https://blogs.nlmatics.com/2020/08/25/Optimizing-Transformer-Q&A-Models-for-Naturalistic-Search.html

### roberta.large.qasrl

*See folder:* [roberta.large.qasrl](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.qasrl)

Trained with QASRL dataset

*Application:* Given a passage, get back values for who, what, when, where etc.

*Trained By:* Nima Sheikholeslami

### roberta.large.qatype.lower.RothWithQ

*See folder:* [roberta.large.qatype.lower.RothWithQ](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.qatype.lower.RothWithQ)

Trained with the Roth Question Type dataset.

*Application:* Given a question, return one of the answer types e.g. number, location. See the Roth dataset for full list. 

*Trained By:* Evan Li

### roberta.large.io_qa

See folder: [roberta.large.io_qa](https://huggingface.co/ansukla/roberta/tree/main/roberta.large.io_qa)
Trained with SQuAD 2.0 dataset

*Trained By:* Nima Sheikholeslami

*Training Process:* Use io head to support multiple spans.