antalvdb commited on
Commit
c09032c
1 Parent(s): 2912c8b

Upload 14 files

Browse files
README.md CHANGED
@@ -3,19 +3,17 @@ license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
- - name: bart-base-spelling-nl
7
  results: []
8
  ---
9
 
10
- # bart-base-spelling-nl
11
-
12
  This model is a Dutch fine-tuned version of
13
  [facebook/bart-base](https://huggingface.co/facebook/bart-base).
14
 
15
  It achieves the following results on the evaluation set:
16
 
17
- - Loss: 0.0217
18
- - Cer: 0.0147
19
 
20
  ## Model description
21
 
@@ -23,8 +21,7 @@ This is a text-to-text fine-tuned version of
23
  [facebook/bart-base](https://huggingface.co/facebook/bart-base)
24
  trained on spelling correction. It leans on the excellent work by
25
  Oliver Guhr ([github](https://github.com/oliverguhr/spelling),
26
- [huggingface](https://huggingface.co/oliverguhr/spelling-correction-english-base)). Training
27
- was performed on an AWS EC2 instance (g5.xlarge) on a single GPU.
28
 
29
  ## Intended uses & limitations
30
 
@@ -38,9 +35,9 @@ The model was trained on a Dutch dataset composed of 1,500,000 lines of
38
  text from three public Dutch sources, downloaded from the [Opus
39
  corpus](https://opus.nlpl.eu/):
40
 
41
- - nl-europarlv7.100k.txt (500,000 lines)
42
- - nl-opensubtitles2016.100k.txt (500,000 lines)
43
- - nl-wikipedia.100k.txt (500,000 lines)
44
 
45
  ## Training procedure
46
 
@@ -59,101 +56,192 @@ The following hyperparameters were used during training:
59
 
60
  ### Training results
61
 
62
- | Training Loss | Epoch | Step | Validation Loss | Cer |
63
- |:-------------:|:-----:|:-----:|:---------------:|:------:|
64
- | 0.2546 | 0.02 | 1000 | 0.1801 | 0.9245 |
65
- | 0.1646 | 0.04 | 2000 | 0.1203 | 0.9243 |
66
- | 0.1456 | 0.06 | 3000 | 0.1016 | 0.9242 |
67
- | 0.1204 | 0.09 | 4000 | 0.0849 | 0.9242 |
68
- | 0.1226 | 0.11 | 5000 | 0.0736 | 0.9241 |
69
- | 0.1049 | 0.13 | 6000 | 0.0680 | 0.9240 |
70
- | 0.1071 | 0.15 | 7000 | 0.0671 | 0.9241 |
71
- | 0.1038 | 0.17 | 8000 | 0.0615 | 0.9240 |
72
- | 0.0815 | 0.19 | 9000 | 0.0575 | 0.9240 |
73
- | 0.0828 | 0.21 | 10000 | 0.0572 | 0.9241 |
74
- | 0.0851 | 0.24 | 11000 | 0.0533 | 0.9241 |
75
- | 0.0787 | 0.26 | 12000 | 0.0529 | 0.9241 |
76
- | 0.0795 | 0.28 | 13000 | 0.0518 | 0.9239 |
77
- | 0.0864 | 0.3 | 14000 | 0.0492 | 0.9239 |
78
- | 0.0806 | 0.32 | 15000 | 0.0471 | 0.9239 |
79
- | 0.0808 | 0.34 | 16000 | 0.0483 | 0.9238 |
80
- | 0.071 | 0.36 | 17000 | 0.0469 | 0.9239 |
81
- | 0.0661 | 0.38 | 18000 | 0.0446 | 0.9239 |
82
- | 0.0641 | 0.41 | 19000 | 0.0437 | 0.9239 |
83
- | 0.0686 | 0.43 | 20000 | 0.0428 | 0.9238 |
84
- | 0.0597 | 0.45 | 21000 | 0.0431 | 0.9238 |
85
- | 0.0585 | 0.47 | 22000 | 0.0417 | 0.9238 |
86
- | 0.0675 | 0.49 | 23000 | 0.0406 | 0.9238 |
87
- | 0.0678 | 0.51 | 24000 | 0.0395 | 0.9238 |
88
- | 0.0581 | 0.53 | 25000 | 0.0393 | 0.9238 |
89
- | 0.0569 | 0.56 | 26000 | 0.0371 | 0.9239 |
90
- | 0.0632 | 0.58 | 27000 | 0.0378 | 0.9238 |
91
- | 0.0589 | 0.6 | 28000 | 0.0377 | 0.9238 |
92
- | 0.0511 | 0.62 | 29000 | 0.0366 | 0.9237 |
93
- | 0.0651 | 0.64 | 30000 | 0.0358 | 0.9239 |
94
- | 0.0594 | 0.66 | 31000 | 0.0356 | 0.9238 |
95
- | 0.054 | 0.68 | 32000 | 0.0368 | 0.9238 |
96
- | 0.0498 | 0.71 | 33000 | 0.0353 | 0.9238 |
97
- | 0.0559 | 0.73 | 34000 | 0.0337 | 0.9238 |
98
- | 0.0502 | 0.75 | 35000 | 0.0341 | 0.9238 |
99
- | 0.0588 | 0.77 | 36000 | 0.0339 | 0.9239 |
100
- | 0.0487 | 0.79 | 37000 | 0.0338 | 0.9237 |
101
- | 0.0489 | 0.81 | 38000 | 0.0333 | 0.9236 |
102
- | 0.0493 | 0.83 | 39000 | 0.0331 | 0.9237 |
103
- | 0.0481 | 0.85 | 40000 | 0.0323 | 0.9237 |
104
- | 0.0444 | 0.88 | 41000 | 0.0318 | 0.9237 |
105
- | 0.0446 | 0.9 | 42000 | 0.0311 | 0.9238 |
106
- | 0.0469 | 0.92 | 43000 | 0.0311 | 0.9237 |
107
- | 0.0525 | 0.94 | 44000 | 0.0312 | 0.9237 |
108
- | 0.042 | 0.96 | 45000 | 0.0312 | 0.9236 |
109
- | 0.0541 | 0.98 | 46000 | 0.0304 | 0.9237 |
110
- | 0.0417 | 1.0 | 47000 | 0.0293 | 0.9238 |
111
- | 0.0369 | 1.03 | 48000 | 0.0305 | 0.9237 |
112
- | 0.0357 | 1.05 | 49000 | 0.0297 | 0.9237 |
113
- | 0.0394 | 1.07 | 50000 | 0.0296 | 0.9237 |
114
- | 0.0343 | 1.09 | 51000 | 0.0288 | 0.9237 |
115
- | 0.037 | 1.11 | 52000 | 0.0286 | 0.9237 |
116
- | 0.0367 | 1.13 | 53000 | 0.0281 | 0.9237 |
117
- | 0.0336 | 1.15 | 54000 | 0.0287 | 0.9236 |
118
- | 0.0331 | 1.18 | 55000 | 0.0275 | 0.9237 |
119
- | 0.0381 | 1.2 | 56000 | 0.0276 | 0.9237 |
120
- | 0.0438 | 1.22 | 57000 | 0.0269 | 0.9237 |
121
- | 0.0319 | 1.24 | 58000 | 0.0274 | 0.9236 |
122
- | 0.0364 | 1.26 | 59000 | 0.0265 | 0.9237 |
123
- | 0.0402 | 1.28 | 60000 | 0.0262 | 0.9237 |
124
- | 0.0341 | 1.3 | 61000 | 0.0259 | 0.9237 |
125
- | 0.0346 | 1.32 | 62000 | 0.0258 | 0.9237 |
126
- | 0.0378 | 1.35 | 63000 | 0.0258 | 0.9236 |
127
- | 0.0372 | 1.37 | 64000 | 0.0253 | 0.9237 |
128
- | 0.0375 | 1.39 | 65000 | 0.0248 | 0.9237 |
129
- | 0.0336 | 1.41 | 66000 | 0.0246 | 0.9236 |
130
- | 0.031 | 1.43 | 67000 | 0.0246 | 0.9237 |
131
- | 0.0344 | 1.45 | 68000 | 0.0248 | 0.9236 |
132
- | 0.0307 | 1.47 | 69000 | 0.0244 | 0.9236 |
133
- | 0.0293 | 1.5 | 70000 | 0.0239 | 0.9237 |
134
- | 0.0406 | 1.52 | 71000 | 0.0235 | 0.9236 |
135
- | 0.0273 | 1.54 | 72000 | 0.0235 | 0.9236 |
136
- | 0.0316 | 1.56 | 73000 | 0.0234 | 0.9235 |
137
- | 0.0308 | 1.58 | 74000 | 0.0229 | 0.9236 |
138
- | 0.0291 | 1.6 | 75000 | 0.0229 | 0.9236 |
139
- | 0.0325 | 1.62 | 76000 | 0.0229 | 0.9236 |
140
- | 0.0347 | 1.65 | 77000 | 0.0224 | 0.9237 |
141
- | 0.0268 | 1.67 | 78000 | 0.0226 | 0.9237 |
142
- | 0.0279 | 1.69 | 79000 | 0.0219 | 0.9236 |
143
- | 0.0247 | 1.71 | 80000 | 0.0220 | 0.9235 |
144
- | 0.0259 | 1.73 | 81000 | 0.0215 | 0.9236 |
145
- | 0.0294 | 1.75 | 82000 | 0.0217 | 0.9235 |
146
- | 0.0267 | 1.77 | 83000 | 0.0217 | 0.9236 |
147
- | 0.0273 | 1.79 | 84000 | 0.0213 | 0.9236 |
148
- | 0.0242 | 1.82 | 85000 | 0.0213 | 0.9236 |
149
- | 0.0254 | 1.84 | 86000 | 0.0210 | 0.9236 |
150
- | 0.0273 | 1.86 | 87000 | 0.0209 | 0.9236 |
151
- | 0.0261 | 1.88 | 88000 | 0.0210 | 0.9235 |
152
- | 0.0244 | 1.9 | 89000 | 0.0206 | 0.9235 |
153
- | 0.0256 | 1.92 | 90000 | 0.0206 | 0.9235 |
154
- | 0.0283 | 1.94 | 91000 | 0.0205 | 0.9235 |
155
- | 0.0255 | 1.97 | 92000 | 0.0204 | 0.9235 |
156
- | 0.022 | 1.99 | 93000 | 0.0203 | 0.9235 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157
 
158
 
159
  ### Framework versions
 
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
+ - name: bart-base-spelling-nl-1m
7
  results: []
8
  ---
9
 
 
 
10
  This model is a Dutch fine-tuned version of
11
  [facebook/bart-base](https://huggingface.co/facebook/bart-base).
12
 
13
  It achieves the following results on the evaluation set:
14
 
15
+ - Loss: 0.0221
16
+ - Cer: 0.0145
17
 
18
  ## Model description
19
 
 
21
  [facebook/bart-base](https://huggingface.co/facebook/bart-base)
22
  trained on spelling correction. It leans on the excellent work by
23
  Oliver Guhr ([github](https://github.com/oliverguhr/spelling),
24
+ [huggingface](https://huggingface.co/oliverguhr/spelling-correction-english-base)). Training was performed on an AWS EC2 instance (g5.xlarge) on a single GPU.
 
25
 
26
  ## Intended uses & limitations
27
 
 
35
  text from three public Dutch sources, downloaded from the [Opus
36
  corpus](https://opus.nlpl.eu/):
37
 
38
+ - nl-europarlv7.100k.txt (1,000,000 lines)
39
+ - nl-opensubtitles2016.100k.txt (1,000,000 lines)
40
+ - nl-wikipedia.100k.txt (964,203 lines)
41
 
42
  ## Training procedure
43
 
 
56
 
57
  ### Training results
58
 
59
+ | Training Loss | Epoch | Step | Validation Loss | Cer |
60
+ |:-------------:|:-----:|:------:|:---------------:|:------:|
61
+ | 0.2824 | 0.01 | 1000 | 0.2129 | 0.9219 |
62
+ | 0.1971 | 0.02 | 2000 | 0.1600 | 0.9217 |
63
+ | 0.171 | 0.03 | 3000 | 0.1273 | 0.9217 |
64
+ | 0.1586 | 0.04 | 4000 | 0.1110 | 0.9216 |
65
+ | 0.1288 | 0.05 | 5000 | 0.0991 | 0.9214 |
66
+ | 0.1338 | 0.06 | 6000 | 0.0910 | 0.9215 |
67
+ | 0.1279 | 0.08 | 7000 | 0.0831 | 0.9215 |
68
+ | 0.1147 | 0.09 | 8000 | 0.0789 | 0.9215 |
69
+ | 0.1091 | 0.1 | 9000 | 0.0769 | 0.9216 |
70
+ | 0.0935 | 0.11 | 10000 | 0.0700 | 0.9214 |
71
+ | 0.0963 | 0.12 | 11000 | 0.0678 | 0.9215 |
72
+ | 0.0969 | 0.13 | 12000 | 0.0654 | 0.9214 |
73
+ | 0.0957 | 0.14 | 13000 | 0.0627 | 0.9215 |
74
+ | 0.0886 | 0.15 | 14000 | 0.0644 | 0.9215 |
75
+ | 0.0911 | 0.16 | 15000 | 0.0604 | 0.9215 |
76
+ | 0.0955 | 0.17 | 16000 | 0.0595 | 0.9215 |
77
+ | 0.0875 | 0.18 | 17000 | 0.0587 | 0.9213 |
78
+ | 0.0879 | 0.19 | 18000 | 0.0576 | 0.9214 |
79
+ | 0.079 | 0.21 | 19000 | 0.0550 | 0.9213 |
80
+ | 0.0808 | 0.22 | 20000 | 0.0536 | 0.9215 |
81
+ | 0.0684 | 0.23 | 21000 | 0.0536 | 0.9214 |
82
+ | 0.0789 | 0.24 | 22000 | 0.0530 | 0.9214 |
83
+ | 0.088 | 0.25 | 23000 | 0.0524 | 0.9215 |
84
+ | 0.076 | 0.26 | 24000 | 0.0519 | 0.9214 |
85
+ | 0.0714 | 0.27 | 25000 | 0.0506 | 0.9213 |
86
+ | 0.0664 | 0.28 | 26000 | 0.0495 | 0.9213 |
87
+ | 0.0791 | 0.29 | 27000 | 0.0492 | 0.9215 |
88
+ | 0.0702 | 0.3 | 28000 | 0.0485 | 0.9215 |
89
+ | 0.0709 | 0.31 | 29000 | 0.0493 | 0.9213 |
90
+ | 0.0676 | 0.32 | 30000 | 0.0480 | 0.9214 |
91
+ | 0.0692 | 0.34 | 31000 | 0.0468 | 0.9215 |
92
+ | 0.0633 | 0.35 | 32000 | 0.0473 | 0.9213 |
93
+ | 0.0732 | 0.36 | 33000 | 0.0455 | 0.9213 |
94
+ | 0.0809 | 0.37 | 34000 | 0.0455 | 0.9214 |
95
+ | 0.0562 | 0.38 | 35000 | 0.0451 | 0.9214 |
96
+ | 0.0715 | 0.39 | 36000 | 0.0440 | 0.9214 |
97
+ | 0.0596 | 0.4 | 37000 | 0.0441 | 0.9214 |
98
+ | 0.0534 | 0.41 | 38000 | 0.0430 | 0.9213 |
99
+ | 0.0657 | 0.42 | 39000 | 0.0427 | 0.9214 |
100
+ | 0.0643 | 0.43 | 40000 | 0.0441 | 0.9212 |
101
+ | 0.0579 | 0.44 | 41000 | 0.0414 | 0.9213 |
102
+ | 0.0695 | 0.45 | 42000 | 0.0430 | 0.9212 |
103
+ | 0.0566 | 0.47 | 43000 | 0.0413 | 0.9212 |
104
+ | 0.0646 | 0.48 | 44000 | 0.0415 | 0.9213 |
105
+ | 0.0573 | 0.49 | 45000 | 0.0410 | 0.9212 |
106
+ | 0.0568 | 0.5 | 46000 | 0.0406 | 0.9213 |
107
+ | 0.065 | 0.51 | 47000 | 0.0405 | 0.9213 |
108
+ | 0.063 | 0.52 | 48000 | 0.0396 | 0.9213 |
109
+ | 0.0654 | 0.53 | 49000 | 0.0397 | 0.9213 |
110
+ | 0.0506 | 0.54 | 50000 | 0.0391 | 0.9212 |
111
+ | 0.0573 | 0.55 | 51000 | 0.0382 | 0.9213 |
112
+ | 0.0569 | 0.56 | 52000 | 0.0381 | 0.9214 |
113
+ | 0.0597 | 0.57 | 53000 | 0.0381 | 0.9212 |
114
+ | 0.0543 | 0.58 | 54000 | 0.0374 | 0.9213 |
115
+ | 0.057 | 0.59 | 55000 | 0.0381 | 0.9213 |
116
+ | 0.058 | 0.61 | 56000 | 0.0380 | 0.9212 |
117
+ | 0.0481 | 0.62 | 57000 | 0.0366 | 0.9213 |
118
+ | 0.0581 | 0.63 | 58000 | 0.0367 | 0.9212 |
119
+ | 0.0521 | 0.64 | 59000 | 0.0363 | 0.9213 |
120
+ | 0.0543 | 0.65 | 60000 | 0.0358 | 0.9212 |
121
+ | 0.0594 | 0.66 | 61000 | 0.0359 | 0.9214 |
122
+ | 0.0479 | 0.67 | 62000 | 0.0354 | 0.9212 |
123
+ | 0.0512 | 0.68 | 63000 | 0.0357 | 0.9211 |
124
+ | 0.0488 | 0.69 | 64000 | 0.0341 | 0.9213 |
125
+ | 0.0485 | 0.7 | 65000 | 0.0346 | 0.9213 |
126
+ | 0.052 | 0.71 | 66000 | 0.0343 | 0.9213 |
127
+ | 0.0427 | 0.72 | 67000 | 0.0341 | 0.9212 |
128
+ | 0.0502 | 0.74 | 68000 | 0.0343 | 0.9211 |
129
+ | 0.0434 | 0.75 | 69000 | 0.0337 | 0.9213 |
130
+ | 0.0579 | 0.76 | 70000 | 0.0337 | 0.9213 |
131
+ | 0.0534 | 0.77 | 71000 | 0.0330 | 0.9212 |
132
+ | 0.0437 | 0.78 | 72000 | 0.0334 | 0.9212 |
133
+ | 0.05 | 0.79 | 73000 | 0.0332 | 0.9213 |
134
+ | 0.043 | 0.8 | 74000 | 0.0329 | 0.9212 |
135
+ | 0.0554 | 0.81 | 75000 | 0.0323 | 0.9212 |
136
+ | 0.0418 | 0.82 | 76000 | 0.0326 | 0.9212 |
137
+ | 0.0461 | 0.83 | 77000 | 0.0326 | 0.9212 |
138
+ | 0.0435 | 0.84 | 78000 | 0.0319 | 0.9212 |
139
+ | 0.0453 | 0.85 | 79000 | 0.0317 | 0.9212 |
140
+ | 0.0434 | 0.87 | 80000 | 0.0318 | 0.9212 |
141
+ | 0.0466 | 0.88 | 81000 | 0.0321 | 0.9212 |
142
+ | 0.0461 | 0.89 | 82000 | 0.0316 | 0.9212 |
143
+ | 0.0381 | 0.9 | 83000 | 0.0311 | 0.9213 |
144
+ | 0.0455 | 0.91 | 84000 | 0.0306 | 0.9212 |
145
+ | 0.0446 | 0.92 | 85000 | 0.0315 | 0.9212 |
146
+ | 0.0532 | 0.93 | 86000 | 0.0305 | 0.9212 |
147
+ | 0.052 | 0.94 | 87000 | 0.0305 | 0.9212 |
148
+ | 0.0353 | 0.95 | 88000 | 0.0305 | 0.9211 |
149
+ | 0.0469 | 0.96 | 89000 | 0.0304 | 0.9212 |
150
+ | 0.0387 | 0.97 | 90000 | 0.0303 | 0.9212 |
151
+ | 0.0478 | 0.98 | 91000 | 0.0302 | 0.9212 |
152
+ | 0.0395 | 1.0 | 92000 | 0.0299 | 0.9212 |
153
+ | 0.0387 | 1.01 | 93000 | 0.0290 | 0.9212 |
154
+ | 0.0356 | 1.02 | 94000 | 0.0287 | 0.9212 |
155
+ | 0.0381 | 1.03 | 95000 | 0.0295 | 0.9212 |
156
+ | 0.0386 | 1.04 | 96000 | 0.0284 | 0.9213 |
157
+ | 0.038 | 1.05 | 97000 | 0.0293 | 0.9212 |
158
+ | 0.0346 | 1.06 | 98000 | 0.0284 | 0.9212 |
159
+ | 0.0357 | 1.07 | 99000 | 0.0285 | 0.9212 |
160
+ | 0.0446 | 1.08 | 100000 | 0.0287 | 0.9211 |
161
+ | 0.0424 | 1.09 | 101000 | 0.0284 | 0.9213 |
162
+ | 0.0357 | 1.1 | 102000 | 0.0282 | 0.9211 |
163
+ | 0.0413 | 1.11 | 103000 | 0.0282 | 0.9211 |
164
+ | 0.0348 | 1.12 | 104000 | 0.0279 | 0.9212 |
165
+ | 0.0363 | 1.14 | 105000 | 0.0279 | 0.9212 |
166
+ | 0.0329 | 1.15 | 106000 | 0.0282 | 0.9211 |
167
+ | 0.0438 | 1.16 | 107000 | 0.0279 | 0.9212 |
168
+ | 0.037 | 1.17 | 108000 | 0.0274 | 0.9212 |
169
+ | 0.0311 | 1.18 | 109000 | 0.0278 | 0.9212 |
170
+ | 0.0297 | 1.19 | 110000 | 0.0275 | 0.9212 |
171
+ | 0.0323 | 1.2 | 111000 | 0.0271 | 0.9212 |
172
+ | 0.0387 | 1.21 | 112000 | 0.0275 | 0.9212 |
173
+ | 0.0366 | 1.22 | 113000 | 0.0269 | 0.9211 |
174
+ | 0.0345 | 1.23 | 114000 | 0.0269 | 0.9211 |
175
+ | 0.0389 | 1.24 | 115000 | 0.0261 | 0.9211 |
176
+ | 0.0381 | 1.25 | 116000 | 0.0265 | 0.9211 |
177
+ | 0.0324 | 1.27 | 117000 | 0.0265 | 0.9211 |
178
+ | 0.0345 | 1.28 | 118000 | 0.0260 | 0.9212 |
179
+ | 0.032 | 1.29 | 119000 | 0.0260 | 0.9211 |
180
+ | 0.0359 | 1.3 | 120000 | 0.0259 | 0.9211 |
181
+ | 0.0347 | 1.31 | 121000 | 0.0259 | 0.9212 |
182
+ | 0.0334 | 1.32 | 122000 | 0.0253 | 0.9211 |
183
+ | 0.0297 | 1.33 | 123000 | 0.0260 | 0.9210 |
184
+ | 0.0333 | 1.34 | 124000 | 0.0251 | 0.9212 |
185
+ | 0.0303 | 1.35 | 125000 | 0.0254 | 0.9211 |
186
+ | 0.0292 | 1.36 | 126000 | 0.0250 | 0.9211 |
187
+ | 0.0318 | 1.37 | 127000 | 0.0250 | 0.9212 |
188
+ | 0.0284 | 1.38 | 128000 | 0.0250 | 0.9211 |
189
+ | 0.0311 | 1.4 | 129000 | 0.0248 | 0.9211 |
190
+ | 0.0323 | 1.41 | 130000 | 0.0248 | 0.9211 |
191
+ | 0.0253 | 1.42 | 131000 | 0.0244 | 0.9211 |
192
+ | 0.0287 | 1.43 | 132000 | 0.0246 | 0.9211 |
193
+ | 0.0351 | 1.44 | 133000 | 0.0240 | 0.9212 |
194
+ | 0.0363 | 1.45 | 134000 | 0.0238 | 0.9211 |
195
+ | 0.0264 | 1.46 | 135000 | 0.0240 | 0.9211 |
196
+ | 0.0304 | 1.47 | 136000 | 0.0242 | 0.9211 |
197
+ | 0.0325 | 1.48 | 137000 | 0.0236 | 0.9212 |
198
+ | 0.033 | 1.49 | 138000 | 0.0239 | 0.9211 |
199
+ | 0.03 | 1.5 | 139000 | 0.0236 | 0.9211 |
200
+ | 0.0256 | 1.51 | 140000 | 0.0235 | 0.9211 |
201
+ | 0.0312 | 1.53 | 141000 | 0.0237 | 0.9211 |
202
+ | 0.0302 | 1.54 | 142000 | 0.0237 | 0.9211 |
203
+ | 0.0227 | 1.55 | 143000 | 0.0232 | 0.9212 |
204
+ | 0.0261 | 1.56 | 144000 | 0.0232 | 0.9211 |
205
+ | 0.0269 | 1.57 | 145000 | 0.0227 | 0.9211 |
206
+ | 0.0312 | 1.58 | 146000 | 0.0228 | 0.9211 |
207
+ | 0.0298 | 1.59 | 147000 | 0.0231 | 0.9211 |
208
+ | 0.0281 | 1.6 | 148000 | 0.0226 | 0.9212 |
209
+ | 0.029 | 1.61 | 149000 | 0.0227 | 0.9211 |
210
+ | 0.0324 | 1.62 | 150000 | 0.0225 | 0.9211 |
211
+ | 0.0251 | 1.63 | 151000 | 0.0223 | 0.9212 |
212
+ | 0.0278 | 1.64 | 152000 | 0.0223 | 0.9211 |
213
+ | 0.0284 | 1.65 | 153000 | 0.0224 | 0.9210 |
214
+ | 0.0254 | 1.67 | 154000 | 0.0220 | 0.9211 |
215
+ | 0.028 | 1.68 | 155000 | 0.0221 | 0.9210 |
216
+ | 0.0247 | 1.69 | 156000 | 0.0222 | 0.9211 |
217
+ | 0.0295 | 1.7 | 157000 | 0.0218 | 0.9211 |
218
+ | 0.0283 | 1.71 | 158000 | 0.0216 | 0.9211 |
219
+ | 0.0245 | 1.72 | 159000 | 0.0218 | 0.9211 |
220
+ | 0.0249 | 1.73 | 160000 | 0.0216 | 0.9211 |
221
+ | 0.0264 | 1.74 | 161000 | 0.0215 | 0.9211 |
222
+ | 0.0264 | 1.75 | 162000 | 0.0213 | 0.9211 |
223
+ | 0.0306 | 1.76 | 163000 | 0.0212 | 0.9211 |
224
+ | 0.0242 | 1.77 | 164000 | 0.0212 | 0.9212 |
225
+ | 0.0247 | 1.78 | 165000 | 0.0211 | 0.9211 |
226
+ | 0.0227 | 1.8 | 166000 | 0.0211 | 0.9210 |
227
+ | 0.0252 | 1.81 | 167000 | 0.0211 | 0.9211 |
228
+ | 0.0269 | 1.82 | 168000 | 0.0208 | 0.9211 |
229
+ | 0.0256 | 1.83 | 169000 | 0.0209 | 0.9211 |
230
+ | 0.0234 | 1.84 | 170000 | 0.0207 | 0.9211 |
231
+ | 0.0258 | 1.85 | 171000 | 0.0207 | 0.9211 |
232
+ | 0.0282 | 1.86 | 172000 | 0.0205 | 0.9210 |
233
+ | 0.0282 | 1.87 | 173000 | 0.0206 | 0.9210 |
234
+ | 0.0234 | 1.88 | 174000 | 0.0205 | 0.9211 |
235
+ | 0.0222 | 1.89 | 175000 | 0.0204 | 0.9211 |
236
+ | 0.0237 | 1.9 | 176000 | 0.0203 | 0.9211 |
237
+ | 0.0299 | 1.91 | 177000 | 0.0203 | 0.9211 |
238
+ | 0.0246 | 1.93 | 178000 | 0.0203 | 0.9211 |
239
+ | 0.0227 | 1.94 | 179000 | 0.0204 | 0.9211 |
240
+ | 0.0253 | 1.95 | 180000 | 0.0202 | 0.9211 |
241
+ | 0.0197 | 1.96 | 181000 | 0.0202 | 0.9211 |
242
+ | 0.0231 | 1.97 | 182000 | 0.0200 | 0.9211 |
243
+ | 0.0244 | 1.98 | 183000 | 0.0201 | 0.9211 |
244
+ | 0.0259 | 1.99 | 184000 | 0.0200 | 0.9211 |
245
 
246
 
247
  ### Framework versions
all_results.json CHANGED
@@ -1,14 +1,14 @@
1
  {
2
  "epoch": 2.0,
3
- "eval_cer": 0.014659309693522676,
4
- "eval_loss": 0.02169678919017315,
5
- "eval_runtime": 1986.5865,
6
  "eval_samples": 2000,
7
- "eval_samples_per_second": 1.007,
8
- "eval_steps_per_second": 0.252,
9
- "train_loss": 0.056187623144469706,
10
- "train_runtime": 103918.6177,
11
- "train_samples": 1497617,
12
- "train_samples_per_second": 28.823,
13
- "train_steps_per_second": 0.901
14
  }
 
1
  {
2
  "epoch": 2.0,
3
+ "eval_cer": 0.014513880422164147,
4
+ "eval_loss": 0.02208337001502514,
5
+ "eval_runtime": 1920.0198,
6
  "eval_samples": 2000,
7
+ "eval_samples_per_second": 1.042,
8
+ "eval_steps_per_second": 0.26,
9
+ "train_loss": 0.05150384478483596,
10
+ "train_runtime": 204639.736,
11
+ "train_samples": 2958558,
12
+ "train_samples_per_second": 28.915,
13
+ "train_steps_per_second": 0.904
14
  }
eval_results.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
  "epoch": 2.0,
3
- "eval_cer": 0.014659309693522676,
4
- "eval_loss": 0.02169678919017315,
5
- "eval_runtime": 1986.5865,
6
  "eval_samples": 2000,
7
- "eval_samples_per_second": 1.007,
8
- "eval_steps_per_second": 0.252
9
  }
 
1
  {
2
  "epoch": 2.0,
3
+ "eval_cer": 0.014513880422164147,
4
+ "eval_loss": 0.02208337001502514,
5
+ "eval_runtime": 1920.0198,
6
  "eval_samples": 2000,
7
+ "eval_samples_per_second": 1.042,
8
+ "eval_steps_per_second": 0.26
9
  }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:427ae75ad33d4a0d44dbd33ed8368148f0c0ed8b6366f6fd4ab811b1a25ab783
3
  size 557971229
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb2eb6470de7d689abff2f06ce460c17539f1dcffe05da3ff6a91b4cf6c353dd
3
  size 557971229
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "epoch": 2.0,
3
- "train_loss": 0.056187623144469706,
4
- "train_runtime": 103918.6177,
5
- "train_samples": 1497617,
6
- "train_samples_per_second": 28.823,
7
- "train_steps_per_second": 0.901
8
  }
 
1
  {
2
  "epoch": 2.0,
3
+ "train_loss": 0.05150384478483596,
4
+ "train_runtime": 204639.736,
5
+ "train_samples": 2958558,
6
+ "train_samples_per_second": 28.915,
7
+ "train_steps_per_second": 0.904
8
  }
trainer_state.json CHANGED
The diff for this file is too large to render. See raw diff
 
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2d6ba773586049a2d1ccba9567f6c8e5b0d83b854a413d7f1ad1c48cba750cc8
3
  size 3707
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcaa8fb3e6403c3f1d958c15d97817380cca47833d439484dd2f38a0a53f4340
3
  size 3707